
Contingent Payments

Mathias Hall-Andersen1[0000−0002−0195−6659]

Aarhus University, mathias@hall-andersen.dk

This document serves as an introduction and extended motivation, the goal is
to make intelligible and motivate the remaining article for people with an MSc
in computer science. Therefore this document serves as a brief introduction to
the problem statement, the notion of cryptographic assumptions, a crash
course on the universal composabilitity framework and the setting of FastSwap.

1 Introduction

1.1 Prisoners Dilemma

Consider the experience of buying/selling license keys over the internet:

Seller: Imagine you are running a shop which sells license keys to a wide
selection of commercial software. A customer buys a license key for a piece of
office software, he pays using Visa, you send him the license key. However a few
days later he disputes the payment, saying that the key did not work. You
know this to be false.

Buyers: Now suppose you wish to buy a license to a piece of commercial
software. You go online, find a seeming legitimate looking website and buy a
license key using Bitcoin. However when you receive the key, it does not work.
You try to contact the seller, but no response.

What is described above is a modern variant of the classical prisoners dilemma:
whichever party moves first is at risk of being cheated: the buyer can finalize
the payment (using Bitcoin) and get scammed by the seller, or the seller can
finalize the sale (sending the key) and get scammed by the buyer. What largely
saves people in modern society from the constant experience of being defrauded
by strangers is the existence of strong judicial systems which can enforce harsh
punishments that far outweighs the limited gain from cheating in the interaction:
essentially by arbitrarily imposing a cost to defecting in the game. However, this
approach is ill suited if:

1. The participants cannot agree on a judicial system to trust, this issue com-
pounds if the stakes are very high, which makes corrupting the judicial sys-
tems a more viable strategy.

2. The participants are anonymous, such that no penalty can be enforced.

The latter is especially devastating since it even curtails the possibility of locally
keeping a score of ‘good’ and ‘bad’ merchants/customers.

2 Mathias Hall-Andersen

1.2 Contingent Payments

In this thesis we, in particular, suggest a practical scheme for solving these kinds
of ‘Contingent Payments’ where payment occurs if and only if the input (e.g.
serial key) satisfies a predicate (e.g. serial key check algorithm). Further examples
of such problems might be:

– Buying proofs. The predicate consists of a formal proof checker which checks
every application of derivation rules in a proof provided by the seller.

– Out sourcing computation. Where the buyer encodes the properties of a so-
lution to some large problem that he wishes to have solved, e.g. solving some
resource allocation problem.

– Cross-chain swaps / interaction. Where the seller exchanges a signed transac-
tion on one blockchain for monetary compensation on another. This can po-
tentially be generalized to interactions with complex smart contracts across
chains by including the smart contract code in the predicate.

– Trustless bug-bounties. Where the buyer compiles a vulnerable program e.g.
a file-parser, into a contingent payment predicate and wishes to buy a file
such that the seller clearly illustrates control of the program counter (e.g.
by setting it to a magical value).

– File transfer. Where the buyer wishes to obtain a file with a particular hash.
This is the particular use case considered in the FairSwap paper.

In general any kind of digital good that can be defined by a computable program.
The goal of thesis has been to devise a scheme that would be practical for all
the aforementioned applications and many more.

1.3 Cryptographic Assumptions

We will make wide application of cryptographic primitives and ultimately reduce
security of the FastSwap protocol to cryptographic assumptions. As an exam-
ple of both cryptographic primitives and cryptographic assumptions, consider a
simple and widely applied primitive: authenticated encryption (Definition 1).

Definition 1 (Authenticated Encryption). An authenticated encryption scheme
consists of a family indexed by a security parameter κ of pairs of two PPT (poly-
nomial in κ) algorithms:

– Seal : Kκ ×M→ C, encrypts a plaintext yielding a ciphertext.
– Open : Kκ×C →M∪{⊥}, decrypts and authenticates the ciphertext, yielding

either ⊥ or a decrypted message.

Satisfying perfect completeness for every message.

∀m ∈M : 1 = P
k

$←{0,1}
[Open(k, Seal(k,m)) = m] (1)

Contingent Payments 3

Adversary Oracle

k
$← Kκ

Repeat 	
. . . m

c← Seal(k,m)

c

Repeat �

. . . m0,m1

If |m0| 6= |m1|, the adversary losses.

b
$← {0, 1}

c← Seal(k,mb)

c

Repeat 	
. . . m

c← Seal(k,m)

c

Repeat �

. . . b′

Wins if b = b′

Fig. 1. IND-CPA Game

4 Mathias Hall-Andersen

Adversary Oracle

k
$← Kκ

C ← ∅
Repeat 	

. . . m

c← Seal(k,m)

C ← C ∪ {c}
c

. . . c

m← Open(k, c)

m

Repeat �

. . . c

Wins if c /∈ C, Open(k, c) 6= ⊥

Fig. 2. SUF-CMA Game

Contingent Payments 5

The previous definition (Definition 1) is not concerned with security, in par-
ticular it does not rule out ‘clearly insecure’, but perfectly complete instantia-
tions like Seal(k,m) = m. In order to define what ‘secure’ means for primitives,
we formulate security games (see Figure 1, Figure 2) played by an ‘adversary’
against an ‘oracle’, ’security‘ then means that the winning probability for any
polynomial adversary is bounded by some expression: usually reflecting that the
adversary only does negligibly better than the naive strategy. For IND-CPA1

security, he require that ciphertexts are indistinguishable to the adversary, even
when he is allowed to encrypt arbitrary message:

Definition 2 (IND-CPA Security). An authenticated encryption scheme is
said to be IND-CPA if for every PPT adversary A playing the IND-CPA game
(Figure 1), there exists a negligible function negl(κ) such that the probability of
A winning the IND-CPA game is bounded by 1/2 + negl(κ).

Note in particular that it implies that encryption cannot be deterministic,
observe also that in Figure 1 the game can only be won if |m0| = |m1|, reflecting
that IND-CPA encryption does not hide the length of messages. For SUF-CMA2

security we intuitively require that the adversary can only create valid cipher-
texts by querying the oracle:

Definition 3 (SUF-CMA Security). An authenticated encryption scheme is
said to be SUF-CMA if for every PPT adversary A playing the SUF-CMA game
(Figure 2), there exists a negligible function negl(κ) such that the probability of
A winning the SUF-CMA game is bounded by negl(κ).

A cryptographic assumption is a conjecture that there exists a primitive
satisfying the security definition:

Conjecture 1. There exists an IND-CPA and SUF-CMA secure authenticated
encryption scheme.

This is clearly an open conjecture3, since in particular it would imply P 6= NP:
For both games the oracleO is PPT if P = NP thenA can non-deterministically
guess the random tape R of O, then simulate OR on his queries and compare the
responses of the simulated oracle and the real transcript to distinguish between
correct guesses. Concretely for the IND-CPA game A can simply guess the key in
non-deterministic polynomial time and accept iff. Open(k, c) = m0, thus winning
the IND-CPA game except with negligible probability.

1.4 Universal Composability & The Real/Ideal Paradigm

What does it mean for protocols to be ‘secure’? Merely claiming that a protocol
is ‘secure’ is a meaningless statement, for two prime reasons: what is the exact

1 Indistinguishability under Chosen Plaintexts
2 Strong Unforgability under Chosen Message Attack
3 Like all cryptographic assumptions.

6 Mathias Hall-Andersen

claimed function of the protocol? Under what conditions is the functionality
ensured4?

The first step in formalizing security consists in formulating exact answers
to these two questions. In order to formalize exactly what the function of our
protocol is we define so-called ‘ideal functionalities’, an ideal functionality in
some ways corresponds to a trusted third-party which all parties can interact
directly with. The desired behavior of the protocol is defined by the ideal func-
tionality: the ideal functionality is the definition of ‘secure’ and in particular
does not depend on cryptographic assumptions. This is best illustrated with an
example: consider a formulation of a simple ideal functionality for an in-order
one-directional encrypted authenticated channel:

Agent FChannel

Channel.leak

FChannelChannel.in Channel.out

Channel.infl

Initialize: Set i← 0, m← ∅.

– On input m on Channel.in.
• Set i← i+ 1.
• Set m←m ∪ {(i,m)}.
• Output (i, |m|) on Channel.leak.

– On input (〈Drop〉, i) on Channel.infl.
• If there exists (i,m) ∈m, update m←m \ {(i,m)}.

– On input (〈Deliver〉, i) on Channel.infl.
• Pick m, st. (i,m) ∈m, if no such m, ignore the message.
• If ∃(m′, i′) ∈m.i′ < i, ignore the message.
• Update m←m \ {(i,m)}.
• Output m on Channel.out.

Note: The functionality does not consider corruptions, i.e. what guar-
antees are provided if either endpoint is compromised, at the start of
the protocol (‘static corruption’) or later (‘adaptive corruption’). Such
extensions would be required to for example capture ‘forward secrecy’.

4 e.g what kind of adversaries is it secure against?

Contingent Payments 7

As the names indicate Channel.infl and Channel.leak are dedicated to the
‘adversary’. They reflect what the adversary can ‘influence’ and ‘learn’ respec-
tively. Additionally the adversary can drop and deliver messages at his discretion
using the influence port, this behavior corresponds roughly to the scenario where
the authenticated channel allows for packets to be dropped (e.g. IPsec) and the
adversary controls the network. Note that the adversary cannot inject messages,
replay messages or deliver them out-of-order.

We also require ideal functionalities to model the underlaying network, as
well as some means of key-establishment. The FNetwork functionality reflects
the adversaries total control of the network:

Agent FNetwork

Network.leak

FNetworkNetwork.in Network.out

Network.infl

– On input m on Network.in.
• Output m on Network.leak.

– On input (〈Deliver〉,m) on Channel.infl.
• Output m on Channel.out.

The FKE allows the establishment of a shared secret with a length chosen
by one of the parties, the ‘adversary’ learns only the length of the shared secret.
In reality FKE is quite hard to instantiate in practice using e.g. FNetwork, due
to Man-in-the-middle type attacks, but for illustration purposes we will simply
assume that this is given.

Agent FKE

8 Mathias Hall-Andersen

FKE
KE.encaps

KE.leakKE.infl

KE.out1 KE.out2

Initialize: Set k ← ε.

– On input κ on KE.encaps.

• Pick k
$← {0, 1}κ.

• Output κ on KE.leak.
– On input 〈Deliver〉 on KE.infl.
• If k = ε ignore the message.
• Output k on KE.out1.
• Output k on KE.out2.

Protocol ΠChannel

KE.leakKE.infl

FKE

Sender Receiver

FNetwork

Network.infl Network.leak

Sender.in Receiver.out

Initialize: Sender set k ← ε, i← 0. Receiver set k ← ε, i← 0.

– Sender:
On input k′ on KE.out1.
• Set k ← k′.

– Sender:
On input m on Sender.in.
• Set i← i+ 1.
• If k = ε, ignore the message.

Contingent Payments 9

∗ Send κ on KE.encaps.
• If k 6= ε:
∗ Compute c← Seal(k, (i,m)).
∗ Output c on Network.in.

– Receiver:
On input k′ on KE.out2:
• Set k ← k′.

– Receiver:
On input x on Network.out:
• p← Open(k, x)
• If p = ⊥ ignore the message.
• Parse p as (i′, p), otherwise ignore the message.
• If i′ ≤ i ignore the message.
• Set i← i′.
• Output m on Receiver.out.

Note: for simplicity reasons ΠChannel drops the messages if no key has
been established. However the functionality also allows dropping of mes-
sages at will and we shall see that ΠChannel still instantiates FChannel.

Security in the universal composability framework is defined by indistinguish-
ably between the ideal world (the ideal functionality) and the real world (the
protocol) to an ’environment‘ which is given access to all the external ports i.e.
the ports not used by the protocol. However, the difference between the ideal and
the real world is allowed to be ‘trivial’, in particular the ΠChannel protocol and
the FChannel ideal functionality does not have the same set of ports, which would
allow trivial distinguishing. To make precise what ‘trivial’ means, we introduce
a simulator: an algorithm no more powerful that the environment which is given
access to the ports of the functionality and can then emulate the exposed ports
of the protocol. The justification is intuitively that any piece of information that
the adversary (‘environment’) learns during interaction in the protocol, he could
also obtain by interacting with the simulator and hence directly from the ideal
functionality with no additional ‘powers’.

There are two ‘parameters’ in the definition above which can be tweaked:
the ‘power’ of the environment and the notion of indistinguishability. In this
article we shall concern ourselves only with PPT environments and negligible
statistical distance (computational indistinguishability): the environment is a
probabilistic polynomial time Turing machine and allowed to succeed with neg-
ligible advantage, which essentially allows the use of cryptographic assumptions
in the protocol. One could consider stronger classes of adversaries e.g. computa-
tionally unbounded ones, or stricter notions of indistinguishability e.g. equality
between the two distributions.

10 Mathias Hall-Andersen

Intuitively, we can think of the FNetwork and FKE functionalities as the
premises for providing FChannel by construction using our protocol and a cor-
responding simulator. Note for instance: the ‘weaker’5 FNetwork and FKE are,
and the ‘strong’6 the FChannel functionality is, the harder it is to provide an
instantiation of FChannel from FNetwork,FKE against a given set of adversaries.

We denote composition of agents by ♦, e.g. ΠChannel ♦ FNetwork ♦ FKE
is the ΠChannel protocol where the ports of ΠChannel has been matched to
the corresponding ports of the functionalities. We write ΠChannel ♦ FNetwork ♦
FKE ≥comp FChannel to indicate that ΠChannel ♦ FNetwork ♦ FKE is ‘at least
as secure’ as FChannel with respect to computationally bounded environments.
More formally, to show ΠChannel ♦FNetwork ♦FKE ≥comp FChannel our task is:

1. Define a simulator SChannel.
2. Show for any PPT environment Z, the distributions SChannel♦FChannel♦Z

and ΠChannel ♦ FNetwork ♦ FKE ♦ Z are statistically indistinguishable.

The latter is done by creating a reduction from the environment Z which suc-
cessfully distinguishes to an adversary A breaking a cryptographic assumption;
in a style superficially similar to Karp reductions known from complexity theory.

Simulator SChannel: simulate ΠChannel using FChannel

KE.leakKE.infl

FChannel

SChannel

Network.infl Network.leak

Channel.in Channel.out

Channel.leak Channel.infl

Initialize: Let C ← [] (a map).

– On 〈Deliver〉 on KE.infl:

• Set k
$← Kκ.

– On (i, |m|) on Channel.leak:
• If k = ε:
∗ Send (〈Drop〉, i) on Channel.infl.

• Otherwise:
∗ Compute c← Seal(k, (i, 0|m|)).

5 Allowing more influence, leaking more state.
6 Allowing less influence, leaking less state.

Contingent Payments 11

∗ Set C[c]← i.
∗ Output c on Network.leak.

– On (〈Deliver〉, x) on Network.infl:
• If x /∈ C, ignore the message.
• Let i← C[x].
• For j ∈ [1, i− 1], output (〈Drop〉, j) on Channel.infl.
• Output (〈Deliver〉, i) on Channel.infl.

Theorem 1 (ΠChannel ♦ FNetwork ♦ FKE ≥comp FChannel).

Proof. Using the simulator SChannel, show:

SChannel ♦ FChannel ♦ Z ≡stat ΠChannel ♦ FNetwork ♦ FKE ♦ Z (2)

We let H0 = SChannel♦FChannel♦Z be the distribution of the original simulation
and consider indistinguishable hybrids H` for all ` > 0 defined as follows:

Consider the sequence of hybrids ` > 0, where H` is derived from H0 st. the
simulator ‘extracts’ m1, . . . ,m` from FChannel and leaks the encryptions of
mi on Network.leak, rather than letting mi = 0|m| for i ∈ [1, `] as done in
SChannel. Note that Hq(κ) for some polynomial q is the distribution where
every query made by Z is answered with Seal(k,mi), i.e. ∀δ > 0 : Hq(κ) =
Hq(κ)+δ. Suppose there exists an adversary that succeeds in distinguishing
between H` and H`+1, then there exists a PPT adversary A winning the IND-
CPA with non-negligible probability. Construct A as follows: run SChannel ♦
FChannel ♦ Z, whenever mi is sent:
– If i ≤ ` send mi to the encryption oracle.
– If i = `+ 1 send (0|mi|,mi) as the challenge to the oracle.
– If i > `+ 1 send 0|mi| to the encryption oracle.

Clearly if b = 0, the distribution is H` otherwise H`+1. Hence A wins the
IND-CPA game with non-negligible advantage.

It follows that H∞ derieved from SChannel where ci ← Seal(k,mi) always, is in-
distinguishable from H0. Lastly it remains to argue that H∞ is indistinguishable
from ΠChannel ♦ FNetwork ♦ FKE ♦ Z. Clearly the distributions of the cipher-
texts c is equal (k is sampled with the same distribution), however the simulator
replaces Open with the map C (crucial for the reduction to IND-CPA in the
previous sequence of hybrids):

Suppose H∞ 6≡stat ΠChannel ♦ FNetwork ♦ FKE ♦ Z, then there exists A
winning the SUF-CMA game with non-negligible probability p(κ). Claim: if
H∞ 6≡stat ΠChannel ♦ FNetwork ♦ FKE ♦ Z, then Z sends (〈Deliver〉, x) st.
Open(k, x) 6= ⊥ and x /∈ C with probability p(κ). Produce A as follows: let
q(κ) be a polynomial bound on the number of (〈Deliver〉, x) queries, pick

j
$← [1, q(κ)], let i← 0. Run ΠChannel ♦FNetwork ♦FKE ♦Z, whenever Seal

must be evaluated, call the tagging oracle in the SUF-CMA game, when Z
sends (〈Deliver〉, x) on Network.infl:

12 Mathias Hall-Andersen

– If i = j, send x as the forgery to the oracle in the SUF-CMA game.
– If i 6= j send x to the check oracle in the SUF-CMA game and obtain p.
– Set i← i+ 1.

With probability 1/q(κ) the guess for the message index is correct, hence with
non-negligible probability p(κ)/q(κ) A wins the SUF-CMA game.

It is also possible to prove security solely in the game-based paradigm, how-
ever the universal composabilitity framework provides one central advantage,
the UC theorem:

Theorem 2 (Universal Composabilitity). Let ΠF , ΠG be protocols imple-
menting FF ,FG respectively. If ΠF ♦ FG ≥comp FF and ΠG ♦ FH ≥comp FG
then (ΠF ♦ΠG) ♦ FH ≥comp FF .

Intuitively the UC theorem states that if a protocol (e.g. ΠF) uses an ideal
functionality (e.g. FG), this functionality can be safely swapped for any sub-
protocol implementing the functionality (e.g. ΠG). Besides providing modular-
ity, this enables us to eliminate potential issues where the interplay between
protocols leads to a system that is ‘insecure’ overall.

1.5 Blockchains

For this thesis we will concern ourselves less with the exact details of the under-
laying blockchain and merely use it as an instantiation of an ideal functionality.
Essentially blockchains offer the promise of an ‘honest-but-curious’ party for
hire: a smart contract can be created by any other participant in the protocol,
its code inspected and a guarantee is provided that this simulated party will act
according to the protocol specification.

Most current blockchains validate smart contract execution in time that is
linear in the length of the computation triggered by the transactions. This is
due to the naive method of ensuring the integrity of the state transition: every
transaction is simply re-executed by every node in the network. This places a
natural constraint on the amount of computation that can be ensured by the
blockchain: no more than the slowest node in the network can execute. Succinct
proofs of computational integrity with sub-linear verification time has only seen
limited application.

Besides introducing a natural upper limit this also leads to a high price of
executing code ‘on-chain’, since the resource is finite and users essentially engage
in an auction for running time. This motivates our desire to reduce the amount of
computation on-chain, both to enable scaling and to reduce costs. Additionally,
smart contracts are ‘honest-but-curious’ which is undesirable when dealing with
private data.

Contingent Payments 13

2 Contributions

I claim to have designed the first truly practical contingent payment protocol,
FastSwap, described in the accompanying article. In particular the distinguishing
features of FastSwap are:

– Concrete efficiency. FastSwap does not depend on zero-knowledge proofs
which often entails significant computational overhead for the prover.

– Honest communication is optimal (the size of the program description and
the witness). In particular it is independent of the length of the computation.

– Dispute communication is logarithmic in the length of the computation. The
dispute resolution contract is independent of the predicate and need only be
deployed once globally.

– The computational model is flexible, in particular branching RAM programs
can be efficiently executed, which enables easy complication of existing lan-
guages to FastSwap predicates.

– Concrete optimizations can enable the executions of complex high-level lan-
guages, even when the language during dispute is very simple (leading to a
small dispute resolution contract). This is likely to yield significant perfor-
mance increases in practice for long-running predicates.

FastSwap

Mathias Hall-Andersen1[0000−0002−0195−6659]

Aarhus University, mathias@hall-andersen.dk

Abstract. FastSwap enables a simple and concretely efficient contin-
gent payments for complex predicates. FastSwap only relies on symmetric
primitives (semantically secure encryption and cryptographic hash func-
tions) and avoids ‘heavy-weight’ primitives such as general ZKP systems.
FastSwap is particularly well-suited for applications where the witness
or predicate is large (on the order of MBs / GBs) or expensive to cal-
culate (e.g. 230 computation steps or memory). Additionally FastSwap
allows predicates to be implemented using virtually any computational
model (including branching execution), which e.g. enables practitioners
to efficiently express the predicate in imperative languages already famil-
iar to them, without an expensive transformation to e.g. satisfiability of
arithmetic circuits. The cost of this efficiency during honest execution is
a logarithmic number of rounds during a dispute resolution in the pres-
ence of a corrupted party. Let the witness be of size |w| and the predicate
of size |P |, where computing P (w) takes n steps. In the honest case the
off-chain communication complexity is |w|+ |P |+ c for a small constant
c, the on-chain communication complexity is c′ for a small constant c′.
In the malicious case the on-chain communication complexity is O(logn)
with small constants. Concretely with suitable optimizations the number
of rounds (on-chain transactions) for a computation of 230 steps can be
brought to 2 in the honest case with an estimated cost of ≈ 2 USD on
the Ethereum blockchain1 and to 14 rounds with an estimated cost of
≈ 4 USD in case of a dispute. It is noted that the corrupted party can
be made a penalty in case of dispute.

Keywords: Contingent payments, Fair exchange, Concrete efficiency,
Smart contracts, Provable security, Universal composability, Authenti-
cated computation structures, Authenticated data structures.

1 Introduction

FastSwap chieftly enables ‘Contingent Payments’, wherin a buyer holds a pred-
icate P and funds, whereas a seller holds a purported witness w for which she
claims P (w) = 1. The goal of a contingent payment protocol is to enable the
buyer to lear w and ensure payment iff. w satisfies P (w) = 1. Examples of
potential applications of contingent payments include:

1 At the time of writing, using a gas price of 10 Gwei (1 ETH = 109 Gwei) and
with price of Ethereum at 160 USD/ETH. Assuming a one-time library contract has
already been published.

2 Mathias Hall-Andersen

– Buying signatures on documents. For example paying for a certificate
iff. the signature on the certificate is correct and particular fields are set.

– Buying transactions. Where the buyer wishes to purchase a signed trans-
action for some blockchain, which causes a particular smart contract (in-
cluded in the predicate) to reach a given state.

– Purchasing solutions to hard problems. e.g. paying for the factoriza-
tion of composite numbers or solutions to resource allocations problems.

– Purchasing a file with a particular hash. In which the buyer wishes to
pay for a large file transfer iff. he receives the full file and its cryptographic
hash matches a particular value.

– Trustless bug-bounties. Where the input (e.g. a file) must violate some
safety constrains (e.g. demonstrate arbitrary control of the control flow) of
a potentially vulnerable program (e.g. an image parser) to be considered a
valid witness.

– Buying formal proofs. The predicate can contain a formal proof checker
and the witness is required to be a formal proof which proves a desired
statement.

We facility this by introduction a very limited ‘honest-but-curious’ judge, which
possesses only poly(log) computation & communication in |w|, |P | and n (the
length of the computation P (w)). Furthermore we want to ensure that when
both parties are honest w is not leaked to the environment. These constraints
each preclude the naive protocol wherein the buyer sends the funds to the judge,
the seller sends w to the judge and the judge pays the seller iff. P (w) = 1. The
motivation for this setting is enabling the instantiation of the judge efficiently
via smart contract.

Like prior works [1] [4], FastSwap enables the judge to learn the whether
the exchange was successful, therefore the action of the judge upon learning the
output of the predicate can be made essentially arbitrary, additionally FastSwap
can easily be extended to multiple ‘buyers’. Due to these features we believe
it might be useful to consider the more general application of enabling ‘off-
chain’ computation of predicate by a (potentially malicious) ‘prover’ under the
scrutiny of one/more (potentially malicious) ‘auditors’, in the presence of a judge
incapable of computing the predicate alone. We note that constructions like
FastSwap has the ability to be significantly more efficient in practice that the
application of current Zero-Knowledge proof systems to elevate the problem.
Hence we frame FastSwap in this more general setting.

FastSwap 3

1.1 Prior Work

Zero-Knowledge Contingent Payments (ZKCP). The Zero-Knowledge
Contingent Payment (ZKCP) construction [4] (by Gregory Maxwell) requires a
zero-knowledge proof system capable over the relation induced by the predicate,
a semantically secure encryption scheme (Enc) and a collision resistant hash
function (CRH). The original formulation is in terms of a seller (acting as the
prover), selling a witness for a predicate P to a buyer (acting as the auditor) in
exchange for financial compensation. The scheme operates as follows: for a public
o, C (chosen by the seller), the seller proves to the buyer in zero-knowledge that
he knows w, k st.

o = CRH(k), P (w) = 1, C = Enc(k,w) (1)

The seller then sends o, C and the proof π to the buyer, who aborts the protocol
in case π is invalid. Otherwise the buyer posts a transaction (acting as the judge)
to the blockchain, which can only be spend by revealing a preimage of o. The
seller claims the funds of the transaction using k, whereby the buyer learns k
and is able to decrypt C to obtain the witness. Variations of this scheme has
been considered[2][10] in applications where supplying π itself leaks information
about the witness, e.g. whenever π itself constitutes a ‘witness’2.

FairSwap. The FairSwap[1] protocol (by Stefan Dziembowski, Lisa Eckey, Se-
bastian Faust) avoids the need for a Zero-Knowledge proof system at the cost
of transmitting the entire encrypted computation trace. Additionally FairSwap
requires that the predicate be computed using a straight-line program. The ex-
ecution model is a computational circuit: an acyclic graph wherein every ver-
tex/gate applies an operation to its children/inputs. The scheme operates by
having the prover evaluate and encrypt the full execution trace (initial inputs
and outputs of every gate), then the prover computes a Merkle commitment to
the encrypted execution trace and sends this to the judge. The encrypted exe-
cution trace is transfered to the auditor, who recomputes the Merkle tree and
verifies that it is consistent with the one held by the judge. Then the decryption
key is sent by the prover to the judge and the auditor decrypts the execution
trace. If any gate is applied incorrectly (or the output of the computation is not
accepting), the auditor can prove Merkle paths to the inputs of the erroneously
applied gate and convince the judge that the prover is malicious. The FairSwap
protocol (as formulated) assumes that the full predicate description is available
to the judge, which makes it best suited for applications where the predicate is
has a small description but potentially a long running time: the example in the
paper being the computation of a Merkle hash which allows the purchasing of
files, where the linear communication complexity of FairSwap in the length of
the trace is optimal. FastSwap is inspired by the FairSwap protocol.

2 An example being Proofs-of-Storage, where a Proof-of-Knowledge for a Proof-of-
Storage on a given challenge is itself a Proof-of-Storage.

4 Mathias Hall-Andersen

Comparison. Let |w| be the size of the witness, let |P | be the size of the pred-
icate description, let n be the length of the computation of P (w). We compare
the complexity and computational models of the two prior works to FastSwap
in Figure 1 and Figure 2. Note that ZKCP does not have a ‘dispute resolution’
phase. FastSwap reduces the communication complexity compared to FairSwap,
additionally FastSwap provides more freedom in the choice of computational
model, in particular allowing efficient execution of branching RAM machines,
which enables relatively easy and efficient compilation of existing imperative
smart contract languages.

Name Computational Model Comm. (off-chain) Comm. (on-chain)

ZKCP (zk-SNARK) Arithmetic Circuit Θ(|P |+ |w|) Θ(1), 2 rounds
FairSwap Computational Circuit Θ(|P |+ |w|+ n) Θ(|P |), 2 rounds

FastSwap RAM Machines Θ(|P |+ |w|) O(1), 2 rounds

Fig. 1. Complexity of honest execution.

Name Communication (on-chain) Rounds (on-chain)

ZKCP (zk-SNARK) – –
FairSwap Θ(logn) Θ(1)

FastSwap Θ(logn) Θ(logn)

Fig. 2. Complexity of dispute resolution.

Recall that generic transformation of a program in the RAM model running
in n steps, requires a circuit of size n3 log n. Hence efficient compilation of e.g.
existing smart contract language to FairSwap (or e.g. ZKCP with zk-SNARKs)
predicates is unlikely, while this is one of the envisioned applications of FastSwap.
One heuristic argument (without rigors game theoretic backing), as to why we
believe the dispute resolution complexity is less crucial than the honest execution
for many real-world applications is that both systems, FairSwap and FastSwap,
allows the judge to discern which party is malicious. Hence a penalty can be en-
forced by having both parties deposit collateral with the judge prior to the swap,
which can be seized / send to the honest party in case of malicious behavior.

1.2 Features of FastSwap

Simple & efficient primitives. The FastSwap protocol does not reply on ‘heavy
weight’ primitives like zero-knowledge proof systems, a central goal of FastSwap
is to provide concrete efficiency for a wide class of very large predicates.

FastSwap 5

Constant communication in the honest case. The communication complexity
during honest execution is the size of the program, the size of the witness and a
small constant. The communication complexity is independent of the length of
the execution for the predicate.

Logarithmic communication for dispute resolution. In case of a malicious prover
or auditor, dispute resolution for an execution trace of n steps is completed
within O(log n) rounds and O(log n) communication with small constants.

Flexible execution model. Previous work require that the predicate is imple-
mented via straight-line program, FastSwap additionally supports efficient branch-
ing execution and RAM machines. One possible application is to enable efficient
compilation of existing smart contract languages to predicates for contingent
payments.

Efficient for large program descriptions. The program description of the pred-
icate need only be available to the prover and auditor, this allows executing
program with large descriptions. This also allows deployment of a generic ‘in-
terpreter & dispute resolution‘ judge contract, which can be reused for selling
different witnesses to different predicates by different parties.

2 Notation

Symbols enclosed in angle brackets 〈·〉 represents unique symbols (‘atoms’), e.g.
〈Identifier〉 is simply a symbol recognized by all participants in the protocol.
The length of a bit string s is denoted by |s|. Throughout the article κ will
denote a security parameter.

3 Primitives

3.1 Symmetric Encryption

Definition 1 (Symmetric Key Encryption). A symmetric encryption schemes
is a family two algorithms running on 1κ (omitted for brevity):

– A PPT algorithm, which samples uniformly from the key space k
$← Kκ

– A PPT algorithm ‘encryption’ Enc : Kκ ×M→ Cκ
– A PPT algorithm ‘decryption’ Dec : Kκ × Cκ →M

Satisfying perfect completeness:

∀m ∈M : 1 = P[Dec(k,Enc(k,m)) = m : k
$← Kκ]

6 Mathias Hall-Andersen

Definition 2 (One-Time Semantic Security). A family of symmetric en-
cryption schemes (Definition 1) is said to be one-time semantically secure if for
all pairs of PPT algorithms (A1,A2), there exists a negligible function negl st.

1/2 + negl(κ) ≥ P[b′ = b ∧ |m1| = |m2| : (m1,m2)← A1(1κ),

b
$← {0, 1}, k $← Kκ, b′ ← A2(1k,Enc(k,mb))]

Note that unlike the ordinary IND-CPA definition, we do not require the en-
cryption scheme to be indistinguishable across multiple encryption queries. In
particular Enc : Kκ ×M→ C can be deterministic.

3.2 Collision Resistant Hashes

Definition 3 (Cryptographic Hash). A family of cryptographic hash func-
tions consists of an efficient deterministic algorithm running on 1κ:

– A polynomial time algorithm ‘hash‘ CRH : {0, 1}∗ → Hκ
Where ∀h ∈ Hκ : |h| = κ

Definition 4 (Collision Resistantance). A hash function family (Definition
3) is said to be collision resistant if for every PPT algorithm A, there exists a
negligible function negl st.

negl(κ) ≥ P[m 6= m′ ∧ CRH(m) = CRH(m′) : (m,m′)← A(1κ)]

3.3 Binding & Hiding Commitments

Definition 5 (Commitment). A commitment scheme is a family of two effi-
cient algorithms running on 1κ (omitted for brevity):

– A PPT algorithm ‘commit‘ Comm : Rκ ×M→ Cκ
– A PPT algorithm ‘open‘ Open : Rκ ×M× Cκ → {0, 1}

Satisfying perfect completeness:

∀m ∈M : 1 = P[Open(r,m, c) = 1 : r
$← Rκ, c← Comm(r,m)]

Definition 6 (Computationally Binding Commitment). A commitment
scheme (Definition 5) is said to be computationally binding if for all PPT algo-
rithm A there exists a negligible function negl st.

negl(κ) ≥ P[m1 6= m2 ∧ Open(r1,m1, c) = 1 ∧ Open(r2,m2, c) = 1 :

(c, r1, r2,m1,m2)← A(1κ)]

FastSwap 7

Definition 7 (Computationally Hiding Commitment). A commitment scheme
(Definition 5) is said to be computationally hiding if for all pairs of PPT algo-
rithms (A1,A2) there exists a negligible function negl st.

1/2 + negl(κ) ≥ P[b′ = b : (m1,m2)← A1(1κ),

b
$← {0, 1}, r $← Rκ, b′ ← A2(1k,Comm(r,mb))]

4 Authenticated Computation Structures

Definition 8 (Authenticated Data Structure). An authenticated data struc-
ture scheme consists of a set of possible states Sκ, a set of tags Tκ, a set of possible
operations O, a set of results R, a set of descriptions of initial states I and four
deterministic polynomial time algorithms:

– Initial : I → S. Construct an initial state from a description.
– Tag : S → Tκ. Compute a succinct ‘tag’ of the state.
– Apply : S × O → S × R × Pκ. Apply an operation to the state, optionally

yielding a result. Produce a proof of correct application of the operation,
which can be verified using only the tags of the original and resulting state.

– Verify : Tκ×Tκ×O×R×Pκ → {1, 0}. Verifies the execution of an operation
on the state corresponding to the tag of the previous state and tag of the
resulting state after application of the operation.

Satisfying perfect completeness:

∀S ∈ S, O ∈ O :Verify(T, T ′, R,O, π) = 1 where

(S′, R, π)← Apply(S,O)

T ← Tag(S), T ′ ← Tag(S′)

Computation is formulated in terms of ‘Authenticated Computation Structures‘,
which can be seen as an authenticated data structure scheme, wherein the op-
eration is uniquely defined by the current state of the data structure and an
immutable ‘environment’.

Definition 9 (Authenticated Computation Structure). An authenticated
computation structure scheme consists of an input space I containing descrip-
tions of of initial computations states, a space of possible computation structures
S, a space of possible ‘environments’ E, a set of ‘tag‘ values Tκ, a set of proofs
Pκ and five deterministic polynomial time algorithms:

– Initial : I → S. Construct an initial state from a description.
– Tag : S → Tκ. Produce a succinct tag corresponding to the structure.
– Step : E × S → S. Progresses the computation by ‘a single step’.

8 Mathias Hall-Andersen

– Prove : E × S → Pκ. Produce a succinct proof of correct execution.
– Verify : E × Tκ × Tκ × Pκ → {1, 0}. Verify the execution of a step.

Satisfying perfect completeness:

∀e ∈ E , S ∈ S :Verify(e, T, T ′, π) = 1 where

S′ ← Step(e, S), π ← Prove(e, S),

T ← Tag(S), T ′ ← Tag(S′)

i.e. verification succeeds for every pair of successive computation structures.

I S1 S2 S3

T1 T2 T3

π1 π2

Verify(e, T2, T3, π2) = 1 Verify(e, T1, T2, π1) = 1

Initial(·) Step(e, ·) Step(e, ·)

Tag(·) Tag(·) Tag(·)

Prove(e, ·) Prove(e, ·)

2|T |+ |π| � |S|

Fig. 3. Relation between the algorithms for auth. computation structures

The primitive is directly related to authenticated data structures (Defintion 8)
and can be generically constructed from such schemes by defining a function
Operation : S → O×Pκ which takes the state of the data structure and returns
the next operation to apply and a proof, then deriving an implementation of
the algorithms above in the obvious way. A concrete example of this pattern is
provided in Section 7.

Definition 10 (Computational Integrity). An authenticated computation
structure scheme is said to provide computational integrity, if Tag : S → Tκ
is a collision resistant hash (Defintion 3) and for every PPT algorithm A, there
exists a negligible function negl such that:

negl(κ) ≥ P[T ′ 6= Tag(Step(e, S)) ∧ Verify(e, T, T ′, π) = 1 :

(e, S, T ′, π)← A(1κ), T ← Tag(S)]

i.e. it is intractable to compute a tag and a proof that passes verification, except
when the tag corresponds to the successor state.

FastSwap 9

For later convience we define some simple functions which are derieved from any
authenticated computational structure scheme:

Definition 11 (Terminate : E × S → N+). Terminate repeatedly applies Step
and returns the number of steps before an accepting or rejecting state is reached.
Formally, with the patterns being matched by preference from top to bottom:

Terminate(e, S) := 1 where S ∈ {〈Accept〉, 〈Reject〉}
Terminate(e, S) := 1 + Terminate(e, S′) where S′ ← Step(e, S)

Where 〈Accept〉 and 〈Reject〉 is uniquely recognized accepting and rejecting ter-
minal states respectively.

Definition 12 (StepN : E × S × N+ → S). StepN applies Step a specified
number of times and returns the resulting state. Formally, with the patterns
being matched by preference from top to bottom:

StepN(e, S, 1) := S

StepN(e, S, ∗) := S where S ∈ {〈Accept〉, 〈Reject〉}
StepN(e, S, n) := StepN(e, S′, n− 1) where S′ ← Step(e, S)

Where 〈Accept〉 and 〈Reject〉 is uniquely recognized accepting and rejecting ter-
minal states respectively. One can think of StepN as returning the n’th step of
the computation right-padded by the final accepting/rejecting state.

5 Ideal Functionalities

We formulate the behavior of FastSwap using the universal composability (UC)
framework with the style and notation of Cramer, et al. [8]. The FSwap func-
tionality captures the desired behavior of a contingent exchange protocol:

Agent FSwap

FSwap
Swap.inprover

Swap.outprover

Swap.outauditor

Swap.inauditor

Swap.infl

Swap.action

Swap.leak

Initialization: set can abort← 1

– Wait for one of three messages on Swap.infl.

10 Mathias Hall-Andersen

� 〈Auditor〉: Mark the prover as corrupted, by ignoring any message
on Swap.inauditor. Whenever a message of the form (〈Send〉,m) is
received on Swap.infl act as if m was received on Swap.inauditor.
Whenever a message m is output on Swap.outauditor, also output
m on Swap.leak

� 〈Prover〉: Mark the prover as corrupted, by ignoring any message
on Swap.inprover. Whenever a message of the form (〈Send〉,m) is
received on Swap.infl act as if m was received on Swap.inprover.
Whenever a message m is output on Swap.outprover, also output
m on Swap.leak

� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– Any time, on input 〈Abort〉 on Swap.infl, Swap.inauditor or
Swap.inprover and if can abort = 1, then abort the protocol:
• Output ⊥ on Swap.outprover.
• Output ⊥ on Swap.outauditor.
• Output ⊥ on Swap.leak.
• Ignore any further messages on any in port.

– On input P on Swap.inauditor:
• Store P .
• Output P on Swap.outprover.
• Output |P | on Swap.leak.

– On input w on Swap.inprover:
• Store w.
• Output |w| on Swap.leak.

– On input 〈Swap〉 on Swap.inprover, when both P , w has been set:
• Set can abort← 0.
• Output w on Swap.outauditor.
• If either party is corrupted leak the entire state of the function-

ality on Swap.leak: every message sent and received by the func-
tionality.

– On input 〈Action〉 on Swap.infl, when can abort = 0:
• Interpret P as a description of a computable function.

Output P (w) on Swap.action and Swap.leak.

The FSwap functionality leaks its entire state after can abort = 0 whenever
a corrupted party is present. Intuitively we can accept to leak the witness to
the world in case of corruption after the protocol cannot be aborted, since after
can abort = 0 the corrupted party will posses the witness and could publish
this (outside the scope of the protocol) regardless. Hiding of the witness must
only be ensured as long as can abort = 1 or whenever both parties are honest.

FastSwap 11

The separation of the 〈Swap〉 and 〈Action〉 messages, enables the implemen-
tation to run some ‘dispute’ protocol in case one of the parties is corrupted,
before delivering the output on Swap.action. The leaked state after 〈Swap〉 can
be used to simulate the leakage of this ‘dispute’ protocol.

The FClock functionality models n monotonically increasing clocks, where
the drift between any pair of clocks is bounded by a constant ∆:

Agent FClock(n,∆)

FClockClock.out1 Clock.out2

Clock.infl

Clock.out3

Initialization. Set t← 0, For i ∈ [1, n], set ti ← t, output ti on Clock.outi.

– On input 〈Clock〉 on Clock.infl. Set t ← t + 1. For i ∈ [1, n], set
ti ← max{ti, t−∆}. For i ∈ [1, n] output ti on Clock.outi.

– On input (〈Update〉, t′i) on Clock.infl. If ti < t′i ≤ t, set ti ← t′i and
output ti on Clock.outi. Otherwise ignore the message.

This formulation allows instantiation of the functionality using a blockchain
which offers ‘finality’ guarantees; ensuring that the view of the honest parties
cannot be rolled back past finalized blocks. Furthermore, one needs to assume
that the view of any node is at most ∆ blocks behind the most recently finalized
block.

The FChannel functionality models an authenticated and encrypted channel
between the prover and auditor, which guarantees in-order delivery of messages:

Agent FChannel

Initialization: create two empty lists: set Mprover ← ε,Mauditor ← ε.

– Wait for one of three messages on Channel.infl
� (〈Corrupt〉, p) : p ∈ {〈Prover〉, 〈Auditor〉}: Mark the party p as

corrupted and allow control of the ports of p as follows:
∗ By ignoring any message on Channel.inp.

12 Mathias Hall-Andersen

∗ Whenever a message of the form (〈Send〉,m) is received on
Channel.infl act as if m was received on Channel.inp.

∗ Whenever a message of the form (〈Recv〉,m) is received on
Channel.infl output m on Channel.outp.

∗ Whenever a message m is output on Channel.outp output m
on Channel.leak instead of Channel.outp.

� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– On input m on Channel.inprover:
• Push m to the back of Mauditor

• Output (〈Auditor〉, |m|) on Channel.leak.
– On input m on Channel.inauditor:
• Push m to the back of Mprover

• Output (〈Prover〉, |m|) on Channel.leak.
– On input (〈Deliver〉, p) on Channel.infl:
• If Mp is not empty, pop the front-most element m and output m

on Channel.inp.

The judge is instantiated with a description D of its transition function,
which both parties must agree upon. Whenever the judge receives input, this
is provided to all parties and leaked, reflecting that the state of the judge is
completely public. The judge furthermore has access to a clock functionality
and an ‘action’ port, which will later correspond to the action port of the FSwap
functionality:

Agent FJudge

FJudge
Judge.inprover

Judge.outprover

Judge.outauditor

Judge.inauditor

Judge.outclock Judge.inclock

Judge.action

– Wait for one of three messages:
� 〈Auditor〉: Mark the prover as corrupted, by ignoring any

message on Judge.inauditor. Whenever a message of the form
(〈Send〉,m) is received on Judge.infl act as if m was received
on Judge.inauditor.

FastSwap 13

� 〈Prover〉: Mark the prover as corrupted, by ignoring any
message on Judge.inprover. Whenever a message of the form
(〈Send〉,m) is received on Judge.infl act as if m was received
on Judge.inprover.

� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– Whenever tnew is received on Judge.inclock, store t← tnew.
– On input D on Judge.inauditor: output D on Judge.leak, output D

on Judge.outauditor, store D.
– On input D′ on Judge.inprover: if D 6= D′, output ⊥ on

Judge.outprover, output ⊥ on Judge.outauditor and abort the proto-
col, by ignoring any subsequent messages on all in ports. Otherwise
set S ← ε and begin processing input messages.

– On input m on Judge.inauditor: output (m, t) on Judge.leak, out-
put (m, t) on Judge.outauditor, output (m, t) on Judge.outprover, up-
date the state (S, r) ← D(S, 〈Auditor〉,m, t), if r 6= ε output r on
Judge.action.

– On input m on Judge.inprover: output (m, t) on Judge.leak, out-
put (m, t) on Judge.outauditor, output (m, t) on Judge.outprover, up-
date the state (S, r) ← D(S, 〈Prover〉,m, t), if r 6= ε output r on
Judge.action.

The FastSwap functionality enables the two parties to agree on the initial
state of a authenticated computation scheme, then allows the prover to input an
environment. If repeated application of Step on the initial state with the given
environment terminates in an accepting state the functionality outputs 1 on
FastSwap.action, otherwise the functionality outputs 0. When both parties are
honest the functionality leaks only the environment and the accepting/rejecting
outcome of the computation, in particular it does not leak the initial state:

Agent FFastSwap

FSwap
FastSwap.inprover

FastSwap.outprover

FastSwap.outauditor

FastSwap.inauditor

FastSwap.infl

FastSwap.action

FastSwap.leak

14 Mathias Hall-Andersen

Initialization: set can abort← 1

– Wait for one of three messages on FastSwap.infl.
� 〈Auditor〉: Mark the prover as corrupted, by ignoring any mes-

sage on FastSwap.inauditor. Whenever a message of the form
(〈Send〉,m) is received on FastSwap.infl act as if m was re-
ceived on FastSwap.inauditor. Whenever a message m is output
on FastSwap.outauditor, also output m on FastSwap.leak
� 〈Prover〉: Mark the prover as corrupted, by ignoring any mes-

sage on FastSwap.inprover. Whenever a message of the form
(〈Send〉,m) is received on FastSwap.infl act as if m was re-
ceived on FastSwap.inprover. Whenever a message m is output
on FastSwap.out, also output m on FastSwap.leak

� 〈Honest〉. Indicating no corruption.
Ignore any subsequent corruption messages.

– Any time, on input 〈Abort〉 on FastSwap.infl, FastSwap.inauditor or
FastSwap.inprover and if can abort = 1, then abort the protocol:
• Output ⊥ on FastSwap.outprover.
• Output ⊥ on FastSwap.outauditor.
• Output ⊥ on FastSwap.leak.
• Ignore any further messages on any in port.

– On input I ′ on FastSwap.inauditor:
• Store I ′.
• If the prover is corrupted, output I ′ on FastSwap.leak.
• Output 〈Input〉 on FastSwap.leak

– On input I on FastSwap.inprover, when I ′ has been set:
• Compute S ← Initial(I).
• Compute S′ ← Initial(I ′).
• If S 6= S′ then abort the protocol (as if 〈Abort〉 was received).

– On input e on FastSwap.proverin:
• Set can abort← 0
• Output e on FastSwap.outauditor.
• Output e on FastSwap.leak.
• If either party is corrupted leak the entire state of the function-

ality on FastSwap.leak: every message sent and received by the
functionality.

– On input 〈Action〉 on FastSwap.infl, when can abort = 0:
• Compute n← Terminate(e, S).

• Output StepN(e, S, n)
?
= 〈Accept〉 on FastSwap.action and

FastSwap.leak.

FastSwap 15

We implement the FSwap functionality using: FFastSwap , FChannel, a se-
mantically secure encryption scheme (Definition 2)3 and a sufficiently expressive
authenticated computational structure scheme (Definition 9):

The authenticated computational structure scheme must allow expression of
the Dec : Kκ × Cκ → M function as well as the set of predicates. The set of
environments for the computational structure scheme must contain Kκ. Further-
more we assume that input descriptions I can be provided in the form (P,W)
where P is the description of a predicate and W is the input to the predicate,
st.: repeated application of the Step : E × S → S functions computes P (e,W),
where e ∈ E is the environment. We can therefore transform the problem in
FSwap of evaluating the predicate P on w, into the problem of repeatedly ap-
plying the Step function to the initial state described by I = (P ◦ Dec(e, ·),W)
where W ← Enc(e, w), with e ∈ Kκ provided as the environment of the Step
function. Intuitively this enables us to swap a constant size key in place of the
actual witness, which additionally provides semantic hiding of the witness from
the auditor while the protocol can still be aborted and from the environment in
case of honest execution.

Protocol ΠSwap : implement FSwap from FFastSwap and FChannel

FFastSwap

FChannel

Prover Auditor

Prover.in

Prover.out Auditor.out

Auditor.in

� Respect the abort of FFastSwap:
• Any time on input ⊥ on FastSwap.outauditor:

Output ⊥ on Auditor.out.
• Any time on input 〈Abort〉 on Auditor.in:

Output 〈Abort〉 on FastSwap.inauditor.
Act analogously for the prover.
� Any time on input 〈Action〉 on Swap.infl:
• Output 〈Action〉 on FastSwap.infl.

– Auditor. On input P on Auditor.in:
• Output P on Channel.inauditor

– Prover. On input P ′ on Channel.outprover:
• Store P ′.

3 For which we require a computable description, hence the application of the IND-
CPA encryption scheme is non-blackbox.

16 Mathias Hall-Andersen

• Output P ′ on Prover.out.
– Prover. On input w on Prover.in:

• Sample k
$← Kκ.

• Compute E ← Enc(k,w).
• Define I = (P ′ ◦ Dec, E).
• Output E on Channel.inprover.
• Output I on FastSwap.inprover.

– Auditor. On input E′ on Channel.outauditor:
• Define I ′ = (P ◦ Dec, E′)
• Output I ′ on FastSwap.inauditor.

– Prover. On input 〈Swap〉 on Prover.in:
• Output k on FastSwap.inprover

– Auditor. On input k on FastSwap.outauditor.
• Output Dec(k,E′) on Auditor.out

Simulator SSwap: simulate ΠSwap using FSwap

FSwap

Simulator

Channel.leak, Channel.infl FastSwap.leak, FastSwap.infl

Auditor.in/Swap.inauditorProver.in/Swap.inprover

Simulated FChannel

Prover.out/Swap.outprover Auditor.out/Swap.outauditor

Swap.leakSwap.infl

FastSwap.action/Swap.action

Respect the abort: any time, on input 〈Abort〉 on FastSwap.infl,
FastSwap.inauditor or FastSwap.inprover: Output 〈Abort〉 on Swap.infl,
Swap.inauditor or Swap.inprover respectively. On ⊥ on Swap.leak, output
⊥ on FastSwap.leak

Wait for the corruption pattern for both FFastSwap and FChannel (the
class of environments is assumed corruption respecting: corrupting the
same parties for every functionality):

Case 1. Neither party is corrupted:

– On input |P | on Swap.leak:
• Simulate sending 0|P | on Channel.inauditor.

– On input |w| on Swap.leak:

• Sample k
$← Kκ.

FastSwap 17

• Compute E ← Enc(k, 0|w|).
• Simulate sending E on Channel.inprover.

– On simulated input E on Channel.inauditor:
• Output 〈Input〉 on FastSwap.leak.

– On input 〈Action〉 on FastSwap.infl:
• Output 〈Action〉 on Swap.infl.

– On P (w) on Swap.leak:
• Output k on FastSwap.leak (as ‘e’).
• Output P (w) on FastSwap.leak.

Case 2. Auditor is corrupted, Prover is honest:
(Note: not simulatable without random oracles, see proof section.)

– On input P on Swap.leak:
• Simulate sending P on Channel.inauditor.

– On simulated input P ′ on Channel.outprover.
• Store P ′

– On input |w| on Swap.leak:

• Sample k
$← Kκ.

• Compute E ← Enc(k, 0|w|).
• Simulate sending E on Channel.inprover.

– On simulated input E′ on Channel.inauditor:
• Output 〈Input〉 on FastSwap.leak.

– On w,P (w) on Swap.leak:
• Reprogram Dec using the RO, such that Dec(k,E) = w.
• Output k on FastSwap.leak (as ‘e’).
• Output w,P (w) on FastSwap.leak.

– On input 〈Action〉 on FastSwap.infl:
• Output 〈Action〉 on Swap.infl.

Case 3. Auditor is honest, Prover is corrupted:

– On input P on Swap.leak:
• Simulate sending P on Channel.inauditor.

– On simulated input P ′ on Channel.outprover.
• Store P ′

– On input w on Swap.leak:

• Sample k
$← Kκ.

• Compute E ← Enc(k,w).
• Simulate sending E on Channel.inprover.

– On simulated input E′ on Channel.inauditor:
• Output 〈Input〉 on FastSwap.leak.

– On w,P (w) on Swap.leak:
• Output k on FastSwap.leak (as ‘e’).
• Output w,P (w) on FastSwap.leak.

– On input 〈Action〉 on FastSwap.infl:
• Output 〈Action〉 on Swap.infl.

18 Mathias Hall-Andersen

Lemma 1 (ΠSwap ♦ FFastSwap ♦ FChannel ≥comp FSwap). ΠSwap implements
FSwap using FFastSwap and FChannel with respect to all computationally bounded
(PPT) environments.

Proof. By case analysis on the corruption pattern of the environment:

Case 1. Neither party is corrupted:

Consider the hybrid HSwap which is equal to SSwap, except where w is extracted
from FSwap and E is derived as E ← Enc(k,w). The difference in the distri-
butions is the leakage on FastSwap.leak: SSwap leaks E′ ← Enc(k, 0|w|), since
|0|w|| = |w| the distributions must be computationally indistinguishable by the
assumption that Enc : Kκ ×M→ Cκ is a CPA secure encryption scheme (Defi-
nition 2).

Case 2. Auditor is corrupted, Prover is honest:

We assume that Enc,Dec is non-committing and implemented using a random
oracle (e.g. using a construction from [7]). Consider again a hybrid Hw which is
equal to SSwap, except where w is extracted from FSwap and E is replaced with
Ew ← Enc(k,w) since |0|w|| = |w|, Ew and E must be computationally indistin-
guishable by the assumption that Enc : Kκ×M→ Cκ is a CPA secure encryption

scheme (Definition 2). Furthermore since k
$← Kκ the probability that the envi-

ronment has queried the oracle on any of the queries made during Dec(k,E) prior
to receiving k is negligible, hence reprogramming is successful with overwhelming
probability. Hence Hw and SSwap are computationally indistinguishable.

A simulatable alternative in the standard model is to deploy non-committing
symmetric encryption, e.g. encrypting with a one-time pad, however this signif-
icantly impedes efficiency since k must have the same size as the witness and
hence the communication with the judge would be linear in the size of the witness.

Case 3. Auditor is honest, Prover is corrupted:

Since a corrupted prover leaks the secret witness of the protocol (before can abort

← 0), this simulation is trivial and the distributions are equal.

The inability to simulate this protocol in the standard model whenever |k| <
|w| is inherent to the structure of the scheme: When the auditor is corrupt
we need to output to the environment a message E which is indistinguishable
from an encryption of the witness, however since the prover is honest only |w|
is leaked, hence E must be uncorrelated with w. Later we must output k to
the environment st. Dec(k,E) = w (except with negligible probability), however
this implies communication at rates greater than channel capacity: since E is
uncorrelated with the message w it could be sampled the receiver directly, then
w is transmitted by sending k.

FastSwap 19

In practical terms this means that the auditor can obtain an encryption of
the witness and then abort the protocol without paying. We note that the prior
works mentioned earlier (would) also require such non-committing encryption
to achieve simulation security. This is due to the similarity between all these
scheme of exchanging a decryption key which enables decryption of the witness,
which has been encrypted and exchanged ‘off-chain’ priorly.

6 The FastSwap Protocol

6.1 Protocol

The protocol is parameterized by a timeout ∆action. The judge maintains a
timer Daction, when Daction expires the judge outputs the current value of the
result variable on the action port as the output of the protocol4. To simplify
the description we assume that the transition function of the judge is sent to the
judge functionality by both players at the start of the protocol and that upon
receiving ⊥ the honest party aborts the protocol. This allows us to treat the
judge as a third party in the protocol.

The overall idea of FastSwap is to have both parties agree on a commitment
of the initial state, with both parties knowing the opening of the commitment. In
case of contingent payments the auditor/buyer would then deposit funds at the
judge. Subsequently the prover reveals the environment by sending it directly
to the judge, at this point a unique5 execution trace is now defined by the
environment and the initial state inside the commitment. In the honest case,
where the trace is accepting, the auditor simply lets the timer Daction expire,
after which the action is assumed complete:

FastSwap : Honest Execution

– Auditor:
• Sample R′

$← Rκ.
• Compute S′1 ← Initial(I ′).
• Compute T ′1 ← Tag(S′1).
• Compute C ′ ← Comm(R′, T ′1).
• Send R′ to the prover.
• Send C ′ to the judge.

– Judge:
• Receive C ′ from the auditor.

4 In blockchain applications for contingency payments, the judge contract can be con-
verted into a wallet contract after the expiry of Daction where result denotes which
party is allowed to withdraw the funds.

5 By ‘unique’, we mean that neither party can break the binding property of the
commitment scheme and Tag function, hence can only posses one such trace. Since
the state is significantly larger than the commitments it is clearly not unique in the
strict sense.

20 Mathias Hall-Andersen

• Set result← 0.
• Start Daction with timeout ∆action.

– Prover:
• Receive R from the auditor.
• Compute S1 ← Initial(I).
• Compute T1 ← Tag(S1).
• Compute C ← Comm(R, T1).
• If C 6= C ′ (from the judge) abort the protocol.
• Send e to the judge.

– Judge:
• Receive e from the prover.
• Set result← 1.
• Reset Daction with timeout ∆action.

– Auditor:
• Compute m← Terminate(e, S′1).
• Compute S′m ← StepN(e, S′1,m).
• If S′m = 〈Accept〉 terminate the protocol.

Otherwise proceed to dispute resolution (see below).

The intuition for the dispute resolution protocol is to maintain two pointers
l and r into the computation trace of the prover. The pointer l will always point
to a computation step that both parties agree on (initially S1, the state inside
the commitment). The pointer r (when defined), will point to a computation
step where Sr 6= S′r. We then search for the greatest value of l and the smallest
value of r, by using an interactive binary search mediated by the judge to ensure
message delivery. Eventually r − l = 1 and the prover uses the authenticated
computation structure scheme to show correct transition from Sl to Sr, with a
succinct proof:

FastSwap : Dispute Resolution

– Auditor:
• Send 〈Dispute〉 to the judge.

– Judge:
• Set result← 0
• Set l← 1, r ← ⊥. Define m = (r − l)/2 (initially m = ⊥).
• Reset Daction with timeout ∆action

– While r = ⊥ or r − l > 1:
• Prover:
∗ If r = ⊥ (first iteration):
· Compute n← Terminate(e, S1).
· Locally set r ← n.
· Send n to the judge.

∗ Compute Sm ← StepN(e, S1,m)a.

FastSwap 21

∗ Compute Tm ← Tag(Sm).
∗ Send Tm to the judge.

• Judge:
∗ If r = ⊥ (first iteration), set r ← n.
∗ Store Tm.
∗ Set result← 1
∗ Reset Daction with timeout ∆action

• Auditor:
∗ Compute S′m ← StepN(e, S′1,m)
∗ If Tm = Tag(S′m), send 〈Left〉 to the judge.
∗ Otherwise, send 〈Right〉 to the judge.

• Judge:
∗ If received 〈Left〉, set l← m, set Tl ← Tm.
∗ If received 〈Right〉, set r ← m, set Tr ← Tm.
∗ Set result← 0
∗ Reset Daction with timeout ∆action

– Prover:
• Compute Sl ← StepN(e, S1, l).
• Compute πl 7→r ← Prove(e, Sl).
• If l = 1, send (πl 7→r, R, T1) to the judge.

Otherwise send πl 7→r to the judge.
– Judge:
• Set result← 1.
• If l = 1 and Open(R, T1, C

′) = 0, set result← 0.
• If r = n and Tr 6= Tag(〈Accept〉), set result← 0
• If Verify(e, Tl, Tr, πl 7→r) = 0, set result← 0.

a Note that m is defined at this point.

The dispute resolution protocol additionally guarantees that if the output is
1, the auditor is corrupted, if the output is 0, the prover must be corrupted. This
allows the judge to optionally trigger penal action towards the dishonest party
(e.g. in a smart contract environment, this might be seizing collateral added to
the contract during the start of the protocol) in the cases where the dispute
resolution protocol is triggered.

6.2 Security Proof

We simulate ΠFastSwap using FFastSwap as follows:

22 Mathias Hall-Andersen

Simulator SFastSwap: simulate ΠFastSwap using FFastSwap

FFastSwap

Channel.infl, Channel.leak

Auditor.in/FastSwap.inauditorProver.in/FastSwap.inprover

Simulated FChannel

Prover.out/FastSwap.outprover Auditor.out/FastSwap.outauditor

FastSwap.leakFastSwap.infl

Judge.infl, Judge.leak

Judge.action/FastSwap.action

Simulated FJudgeSimulated FClock

Clock.infl

Case 1. Neither party is corrupted:

– On input 〈Input〉 on FastSwap.leak:

• Sample R′
$← Rκ.

• Compute C ′ ← Comm(R′, ε).
• Simulate output R′ on Channel.inauditor.
• Simulate output C ′ on Judge.inauditor.

– On input e on FastSwap.leak:
• Wait for simulated input R on Channel.outprover.
• Simulate output e on Judge.inprover.

– On expiry of Daction (inside judge simulation):
• Output 〈Action〉 on FastSwap.infl.
• Output 1 on Judge.leak.

Case 2. Auditor is corrupted, prover is honest:

– On input I ′ (auditors initial state) on FastSwap.leak:

• Sample R′
$← Rκ.

• Compute S′1 ← Initial(I ′).
• Compute T ′1 ← Tag(S′1).
• Compute C ′ ← Comm(R′, T ′1).
• Simulate output R′ on Channel.inauditor.
• Simulate output C ′ on Judge.inauditor.

– On e, SFastSwap on FastSwap.leak (SFastSwap is the leaked state):
• Store SFastSwap.
• Simulate output e on Judge.inprover.

– On 〈Dispute〉 on Judge.leak.
• Simulate the dispute resolution protocol using SFastSwap, by

observing the messages from the corrupted auditor using
Judge.leak and simulating the messages on Judge.inprover of
the honest prover according to the dispute resolution protocol.

– On expiry of Daction:
• Output 〈Action〉 on FastSwap.infl.
• Obtain res on FastSwap.leak: output res on Judge.leak.

FastSwap 23

Case 3. Auditor is honest, prover is corrupted:

Due to FFastSwap leaking the auditors initial state when the prover is
corrupted the simulation is very similar to the case of a corrupted auditor:

– On input I ′ (auditors initial state) on FastSwap.leak:

• Sample R
$← Rκ.

• Compute S′1 ← Initial(I ′).
• Compute T ′1 ← Tag(S′1).
• Compute C ′ ← Comm(R, T ′1).
• Simulate output R on Channel.inprover.
• Simulate output C on Judge.inauditor.

– On e, SFastSwap on FastSwap.leak (SFastSwap is the leaked state):
• Store SFastSwap.
• Output e on Judge.leak.

– On 〈Dispute〉 on Judge.leak.
• Simulate the dispute resolution protocol using SFastSwap, by

observing the messages from the corrupted auditor using
Judge.leak and simulating the messages on Judge.inprover of
the honest auditor according to the dispute resolution protocol.

– On expiry of Daction:
• Output 〈Action〉 on FastSwap.infl.
• Obtain res on FastSwap.leak: output res on Judge.leak.

Lemma 2 (ΠFastSwap♦FJudge♦FChannel♦FClock ≥comp FFastSwap). ΠFastSwap

implements FFastSwap using FJudge, FChannel and FClock with respect to all
computationally bounded (PPT) environments.

Proof. By case analysis on the corruption pattern:

Case 1. Neither party is corrupted:

The prover posses a valid witness and 〈Dispute〉 is not sent to the judge by the
auditor. Hence the leakage in the real execution is comprised solely of the leakage
in the honest execution part of the protocol. The output on FastSwap.action is
always 1, if neither party aborts and the output 1 on Judge.leak is consistent
with the final value of result outputted on Judge.action in the real execution.

Case 2. Auditor is corrupted, prover is honest:

The leakage from the simulation of the honest part of the protocol has exactly the
same distribution as the real protocol. We therefore focuses on the simulation of
the dispute resolution (recall that we obtain the entire state of FFastSwap), in
particular that the leakage is consistent with the output on FastSwap.action.

24 Mathias Hall-Andersen

Since the prover is honest it follows that 〈Accept〉 = StepN(e, S1, n) where
n ← Terminate(e, S1). Except with negligible probability S1 = S′1 by computa-
tional integrity of the authenticated computation scheme (Definition 10) and
binding of the commitment scheme (Definition 6). We claim an invariant of the
loop in the protocol:

l < r ≤ n and Tl = Tag(Sl) and Tr = Tag(Sr)

This is immediately obvious from inspection of the dispute protocol. Upon termi-
nation of the loop r − l = 1 and Verify(e, Tl, Tr, πl 7→r) = 1 with probability 1 (by
completeness of the authenticated computation scheme), furthermore whenever
r = n, we have Sr = 〈Accept〉 hence Tr = Tag(〈Accept〉) also with probabil-
ity 1. Therefore the simulated judge always outputs 1, which is consistent with
FastSwap.action.

Case 3. Auditor is honest, prover is corrupted:

The leakage from the simulation of the honest part of the protocol has exactly the
same distribution as the real protocol. We therefore focuses on the simulation of
the dispute resolution (recall that we obtain the entire state of FFastSwap), in
particular that the leakage is consistent with the output on FastSwap.action.

Since the auditor is honest it follows that 〈Accept〉 6= StepN(e, S′1,m) where
m ← Terminate(e, S′1), hence the judge should output 0. We first establishes
an invariant of the loop in the protocol: Tl = Tag(S′l) and at least one of the
following holds:

♦ l < r ≤ n and Tr 6= Tag(S′r)

♦ l < r = n and Tr 6= Tag(〈Accept〉)

The invariant holds initially where r = n and l = 1, since T1 = Tag(S′1) is
established during the honest part of the protocol and ∀i ∈ [1, n] : S′i 6= 〈Accept〉
(otherwise 〈Accept〉 = StepN(e, S′1,m) as well). During the protocol the corrupted
auditor provides Tw with l < w < r and the invariant is maintained:

– If Tw = Tag(S′w), then l← w.
Hence Tl = Tag(S′l) is maintained and r, Tr is unchanged.

– If Tw 6= Tag(S′w), then r ← w.
Hence Tr 6= Tag(S′r) is established and l, Tl is unchanged.

Upon termination of the loop: r − l = 1, Tl = Tag(S′l) and:

– If r = n and Tr 6= Tag(〈Accept〉), the output is always 0.

– If Tr 6= Tag(S′r), then Verify(e, Tl, Tr, πl 7→r) = 0 except with only negligible
probability, by computational integrity (Definition 10) of the authenticated
computation scheme. Hence the output is 0.

FastSwap 25

7 Instantiation of FastSwap

In this section we propose a simple ‘Ethereum-like’ instantiation of the FastSwap
protocol, based on an authenticated Patricia trie over a sparse memory space.
The state is a tuple (pc, I,Rreg, S) consisting of:

– An instruction pointer pc ∈ N+ pointing to a cell.
– An optional word-sized instruction I (which might be ε).
– A register bank Rreg containing word-sized registers r1, . . . , rn.
– An authenticated data structure S over a memory space of M words.

The memory space is provided by simply ameliorating a Patricia trie6 with a
superimposed Merkle tree (see e.g. [6] appendix D for details), which allows prov-
ing memory lookups by providing at most 2 · log(M) hashes of size κ, where M
is the size of the memory space. We let ProvePatricia,VerifyPatricia,ApplyPatricia
be the associated algorithms of the authenticated Patricia trie. We let Rreg[ri]
denote the looking up the value of the register ri and Rreg[ri ← v] denote a new
register bank, where the value v is assigned to the register ri.

Tag function. We define Tag((pc, I,Rreg, S)) = CRH((TagPatricia(S), pc, I,Rreg)).
Meaning the full register bank, Merkle root, current instruction and program
counter is provided during the verification.

Step function. For efficiency and simplicity reasons the instantiation limits
the number of operations on the memory space during every step to at most
one, this is done by using a ‘2-cycle’ register machine, where every instruction in
the instruction set takes two applications of Step to execute. The Step function
operates as follows, with the state being matched occurring on the left:

Step(e, (pc, ε,Rreg, S)) := (pc, I,Rreg, S)

where (∗, I, ∗)← ApplyPatricia(S, load(pc))

Step(e, (pc, load(i, j),Rreg, S)) := (pc+ 1, ε,Rreg[ri ←M], S)

where (∗,M, ∗)← ApplyPatricia(S, load(Rreg[rj]))
Step(e, (pc, store(i, j),Rreg, S)) := (pc+ 1, ε,Rreg, S′)

where (S′, ∗, ∗)← ApplyPatricia(S, store(Rreg[ri],Rreg[rj]))
Step(e, (pc, jump(i, j),Rreg, S)) := (∆, ε,Rreg, S)

where if Rreg[rj] > 0 then ∆ = Rreg[ri] else ∆ = (pc+ 1)

Step(e, (pc,mult(i, j),Rreg, S)) := (pc+ 1, ε,Rreg[ri ← a · b], S)

where a = Rreg[ri], b = Rreg[rj]
Step(e, (pc, add(i, j),Rreg, S)) := (pc+ 1, ε,Rreg[ri ← a+ b], S)

where a = Rreg[ri], b = Rreg[rj]
6 Radix tree with a radix of 2.

26 Mathias Hall-Andersen

Step(e, (pc, env(i),Rreg, S)) := (pc+ 1, ε,Rreg[ri ← e], S)

Additionally there are two predefined values of pc corresponding to an accepting
and a rejecting state. If either of these addresses are reached, Step replaces the
state with some predefined canonical 〈Accept〉 or 〈Reject〉 state not otherwise
reachable, regardless of the contents of the register bank or memory space:

Step(e, (pcaccept, ε,Rreg, S)) := 〈Accept〉
Step(e, (pcreject, ε,Rreg, S)) := 〈Reject〉

The Step function can always be made complete by mapping any non-conforming
state to 〈Reject〉.

Prove function. The prove function outputs the register bank and a proof for
the authenticated Patricia trie in case of a memory operation:

Prove(e, (pc, ε,Rreg, S)) := (ε, pc,Rreg,TagPatricia(S), I, πlookup)

where (∗, I, πlookup)← ApplyPatricia(S, lookup(pc))

Prove(e, (pc, load(i, j),Rreg, S)) := (load(i, j), pc,Rreg,TagPatricia(S), R, πlookup)

where (∗, R, πlookup)← ApplyPatricia(S, lookup(Rreg[rj]))

Prove(e, (pc, store(i, j),Rreg, S)) := (store(i, j), pc,Rreg,TagPatricia(S),TagPatricia(S′), πstore)

where (S′, ∗, πstore)← ApplyPatricia(S, store(Rreg[ri],Rreg[rj]))

Prove(e, (pc, jump(i, j),Rreg, S)) := (jump(i, j), pc,Rreg,TagPatricia(S))

Prove(e, (pc,mult(i, j),Rreg, S)) := (mult(i, j), pc,Rreg,TagPatricia(S))

Prove(e, (pc, add(i, j),Rreg, S)) := (add(i, j), pc,Rreg,TagPatricia(S))

Prove(e, (pc, env(i),Rreg, S)) := (env(i), pc,Rreg,TagPatricia(S))

Verify function. The verify function follows the approach of computing the
resulting tag from the proof directly. Then verifies that the proof corresponds to
the current tag and that the new tag is equal to the one provided:

Verify(e, T, T ′, π) := T = Tbefore ∧ T ′ = Tafter ∧ Validate(e, π) = 1

where Tafter ← TagAfter(e, π), Tbefore ← TagBefore(e, π)

With TagBefore extracting the ‘previous’ tag from the proof:

TagBefore(e, (ε, pc,Rreg, T, I, πlookup)) := CRH((T, pc, ε,Rreg))

FastSwap 27

TagBefore(e, (load(i, j), pc,Rreg, T,R, πlookup)) := CRH((T, pc, load(i, j),Rreg))
TagBefore(e, (store(i, j), pc,Rreg, T, T ′, πstore)) := CRH((T, pc, store(i, j),Rreg))
TagBefore(e, (jump(i, j), pc,Rreg, T)) := CRH((T, pc, jump(i, j),Rreg))
TagBefore(e, (mult(i, j), pc,Rreg, T)) := CRH((T, pc,mult(i, j),Rreg))
TagBefore(e, (add(i, j), pc,Rreg, T)) := CRH((T, pc, add(i, j),Rreg))
TagBefore(e, (env(i), pc,Rreg, T)) := CRH((T, pc, env(i),Rreg))

With TagAfter extracting the ‘resulting’ tag from the proof, by simulating the
step function using the data provided in the proof string:

TagAfter(e, (ε, pc,Rreg, T, I, πlookup)) := CRH((T, pc, I,Rreg))
TagAfter(e, (load(i, j), pc,Rreg, T,R, πlookup)) := CRH((T, pc+ 1, ε,Rreg[ri ← R]))

TagAfter(e, (store(i, j), pc,Rreg, T, T ′, πstore)) := CRH((T ′, pc+ 1, ε,Rreg))
TagAfter(e, (jump(i, j), pc,Rreg, T, πstore)) :=

CRH((T, if Rreg[rj] > 0 then Rreg[ri] else pc+ 1, ε,Rreg))
TagAfter(e, (mult(i, j), pc,Rreg, T, πstore)) := CRH((T, pc+ 1, ε,Rreg[ri ← ri · rj]))
TagAfter(e, (add(i, j), pc,Rreg, T, πstore)) := CRH((T, pc+ 1, ε,Rreg[ri ← ri + rj]))

TagAfter(e, (env(i), pc,Rreg, T, πstore)) := CRH((T, pc+ 1, ε,Rreg[ri ← e]))

With Validate : E × Pκ → {1, 0} validating the memory operations by apply-
ing the verification of the authenticated data structure used to emulate a large
memory space:

Validate(e, (ε, pc,Rreg, T, I, πlookup)) := VerifyPatricia(T, T, lookup(pc), I, πlookup)

Validate(e, (load(i, j), pc,Rreg, T,R, πlookup)) :=

VerifyPatricia(T, T, lookup(Rreg[rj]), R, πlookup)
Validate(e, (store(i, j), pc,Rreg, T, T ′, πstore)) :=

VerifyPatricia(T, T ′, store(Rreg[ri],Rreg[rj]), ε, πstore)
Validate(e, ∗) := 1

8 Concrete Efficiency Considerations

In this section we cover a few simple optimizations which are of less theoretical
interest, but can improve the concrete efficiency of FastSwap greatly. This section
is aimed at potential implementors.

Reusing the judge. Often deploying the code of a smart contract has significant
cost of its own. However, note that the functionality of the judge does not depend
on the predicate, but only on the authenticated computation structure scheme.
Hence the code can reused between swaps or separated into a library which can
be shared my multiple independent contracts.

28 Mathias Hall-Andersen

High-level execution language. Rather than applying the Step function of the
authenticated computation structure directly the prover and auditor can exe-
cute a more efficient higher level language where each instruction decomposes
into a sequence of simpler low-level instructions from authenticated computation
structure scheme. In case of a dispute the offending high-level instruction must
be unpacked into its lower-level instructions and dispute resolution carried out
at the lower layer. For instance this enables the use of hardware acceleration for
cryptographic primitives in the high-level language while using a function call
to a naive implementation in the low-level language.

‘Just-In-Time’ authenticated data structures. Rather than apply operations di-
rectly to the authenticated data structure used in the authenticated computation
structure, concrete efficiency can often be gained by representing the data more
efficiently during applications of the Step function and only ameliorate the data
structure with the authentication data at states revealed during dispute res-
olution. An example of this is executing a higher level language, where each
instruction corresponds to a long sequence of instructions on the For instance,
when the memory space is represented as a Patricia trie, then when calling dur-
ing Prove and Tag a Merkle tree is temporarily imposed over the data structure.
This enables application of authenticated data structures which would other-
wise inhibit concrete efficiency, e.g. RSA or CDH based vector commitments [5],
which would only have to be computed over logarithmically many snapshots of
the vector representing the memory space in case of dispute, rather than updated
at every step of the computation during the honest execution.

Reduce computational complexity during dispute resolution. Rather than naively
recomputing Sw from S1 during dispute resolution, resulting in n log n compu-
tation steps, this can easily be reduced to n steps, by simply storing the state
Sl corresponding to the left pointer and computing Sw from Sl whenever l < w
and from S1 otherwise.

Efficient language. Language designers are likely to want a language close to
the that of the underlaying smart contract language in which the verifier is
implemented. This is due to the verifier essentially being an interpreter for the
source language, the size of which is directly proportional to the cost of deploying
the judge contract. Additionally high-level instructions of the underlaying smart
contract language (like signature verification and cryptographic hash function
evaluation) can be provided in the source language. Application of such high-
level functions might greatly simply the implementation of the decryption of the
witness inside the predicate.

Send multiple tags during dispute resolution. The number of rounds during dis-
pute resolution can be reduced by a constant log2 c, by having the prover send
2 tags Tw1

, . . . , Twc
, then having the auditor send the index of the last match l

and first mismatch r. For a computation of 230 steps, letting c = 25, this reduces
the number of interactions with the judge during dispute from 62 to 14.

FastSwap 29

Limit storage in the judge contract. The previous optimization introduces a
significantly increased storage requirement on the judge (e.g. 32 hashes stored
every iteration during dispute resolution). Some smart contract execution envi-
ronments, in particular the Ethereum virtual machine, sets the price of storage
very high (20000 ‘gas’ per 256 bits[6]7), compared to the price of memory (e.g.
call arguments) or computation. In particular the cost of:

– Sending 32 words of 256 bits to the contract is ≈ 100 gas[6].
– Computing a Merkle tree over 32 words of 256 bits is ≈ 3000 gas[6]8.
– Storing 32 words is 640000 gas[6].

Hence it is significantly cheaper9 to have the judge compute a Merkle tree over
the arguments (tags) and store the root. Then having the auditor prove a path
to the (at most) two leafs which corresponds to updated l and r values. This is
possible because every input to the judge, not only its current state, is public
and therefore available to the auditor.

9 Further Research

9.1 Constructions of authenticated computation structures.

Unlike authenticated data structures where a proof must prove the correct ex-
ecution of a full operation, the proofs for authenticated computation structures
need only prove a single step of computation which can be arbitrarily small. In
some cases this might enable significantly more efficienct proofs than those for
authenticated data structures under the same cryptographic assumptions:

In Section 7, we have described a concrete instantiation wherein the map
lookup is a single instruction in the language. For our concrete instantiation
this results in proofs of size logM , with M being the size of the memory space.
Alternatively low level operations for walking the authenticated data structure
can be provided by the language and smaller atomic steps in the lookup can be
proved instead. As a simple example consider lookups (load instructions) in the
authenticated Patricia trie of Section 7, but where the state additionally contains
a cryptographic hash digest for an ‘authenticated’ node inside the Patricia tree.
Hence the proof becomes an instance of:

– An instruction pointer pc.
– An instruction I (which might be ε)
– A finite number of fixed-sized registers r1, . . . , rn.
– A tag for an authenticated Patricia tree T .
– A node pointer Hnode.

7 Of which 15000 can be recouped by later clearing the memory.
8 Using 64 invocations of the SHA3 instruction.
9 Our estimates for c = 25 is a 80 - 90 % ‘gas’ saving

30 Mathias Hall-Andersen

Whenever I 6= load(i, j), the verifier operates as in Section 7. Whenever I =
load(i, j) and Hnode = ε, the verifier checks that Hnode ← T in the subsequent
tag. Whenever I = load(i, j) and Hnode 6= ε, the proof additionally consists of a
node in the Patricia tree, Node(prefix, len,Hleft, Hright), and the verifier checks
that Hnode = CRH(Node(prefix, len,Hleft, Hright)) and that Hnode ← Hleft or
Hnode ← Hright in the subsequent tag, depending on whether the lookup in
the tree progresses left/right based on rj [len]. When the leaf is reached, verify
it similarly, set I ← ε, set Hnode ← ε. For updates, where the new hash is
propagated up though the tree, a similar process must be repeated in the opposite
direction, then T ← Hnode at the leaf. Using this approach, the proof size can
be made constant in M while the number of rounds during dispute grows by at
most log logM times.

FastSwap 31

References

1. Author, Stefan Dziembowski, Author, Lisa Eckey, Author, Sebastian Faust. Fair-
Swap: How To Fairly Exchange Digital Goods. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, Series: CCS ’18.
ACM, New York (2018), https://doi.org/10.1145/3243734.3243857.

2. Author, Matteo Campanelli, Author, Rosario Gennaro, Author, Steven Goldfeder,
Author, Luca Nizzardo. Zero-Knowledge Contingent Payments Revisited: Attacks
and Payments for Services. https://doi.org/10.1145/3133956.3134060

3. Author, Henning Pagnia, Author, Felix C. Gartner. On the impossibility of fair
exchange without a trusted third party. 1999.

4. BitcoinWiki, Zero Knowledge Contingent Payment, 2016, https://en.bitcoin.it/
wiki/Zero_Knowledge_Contingent_Payment

5. Author, Dario Catalano, Author, Dario Fiore. Vector Commitments and Their Ap-
plications. Public-Key Cryptography – PKC 2013 https://doi.org/10.1007/978-3-
642-36362-7 5

6. Author, Gavin Wood, Title, Ethereum: A secure decentralized generalized transac-
tion ledger, 2018-08-16 (version e7515a3).

7. Author, Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity
Theoretic Proofs: The Non-committing Encryption Case. Advances in Cryptology
— CRYPTO 2002. https://doi.org/10.1007/3-540-45708-9 8

8. Author, Ronald Cramer, Author, Ivan Bjerre Damg̊ard, Author, Jesper Buus
Nielsen. Secure Multiparty Computation and Secret Sharing (1st edition). ISBN-
13: 978-1107043053.

9. Author, Wac law Banasik, Author, Stefan Dziembowski, Author, Daniel Malinowski.
Title, Efficient Zero-Knowledge Contingent Payments in Cryptocurrencies With-
out Scripts. Computer Security – ESORICS 2016. ESORICS 2016. Lecture Notes
in Computer Science, vol 9879. Springer. https://doi.org/10.1007/978-3-319-45741-
3 14

10. Author, Georg Fuchsbauer. Title, WI Is Not Enough: Zero-Knowledge Con-
tingent (Service) Payments Revisited. CCS ’17 Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, Pages 229-243.
https://doi.org/10.1145/3133956.3134060

https://doi.org/10.1145/3243734.3243857
https://doi.org/10.1145/3133956.3134060
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/3-540-45708-9_8
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1007/978-3-319-45741-3_14
https://doi.org/10.1145/3133956.3134060

