
Either/Or
Mathias Hall-Andersen

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Either/Or

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Mathias Hall-Andersen

January 12, 2024

Abstract

Many models of computation in computer science allow for conditional execution,
for example RAM machines with instructions such as conditional jumps: where the
address of the next instruction depends on the result of a comparison. This means that
only part of the program is executed, depending on the result of the comparison. This
is in contrast to e.g. Boolean circuits, where all operations (AND/XOR/OR etc.) are
executed, regardless of the input. In the zero-knowledge and secure MPC literature,
the primary focus has been on computations without conditional execution, namely
functions represented as circuits over a finite field. This means that if the function is
best represented in a model with conditional execution, it will typically result in all
possible executions (branches) being executed, after which the correct result is chosen
based on the input. This is inefficient, because the communication and prover/verifier
complexity is proportional to the number of branches: in contrast to executing the
function in a model with conditional execution, where only one branch (the active
one) is executed.

This thesis covers techniques for proving branching computation / disjunctions
inside zero-knowledge proofs, as well as related techniques for executing branch-
ing computation in multiparty computation. The following three works have been
selected for the thesis: 1. Stacking Sigmas: A Framework to Compose Σ-Protocols
for Disjunctions. Which proposed a concretely efficient compiler (Stacking Sigmas)
to convert Σ-protocol into proofs of disjunctions with logarithmic overhead in the
number of clauses. 2. Curve Trees: Practical and Transparent Zero-Knowledge Ac-
cumulators. Building concretely efficient cryptographic accumulator with efficient
membership proofs (a disjunction over the members of a set). from commit-and-proof
techniques and a novel use of elliptic curve cycles. 3. Secure Multiparty Computation
with Branching. Constructs efficient protocols for executing conditional branching
(“if-statements”) inside multiparty computation.

i

Resumé

Mange beregningsmodeller (“models of computation”) indenfor datalogi tillader
betinget udførelse, for eksempel RAM machiner med maskininstruktioner såsom
betingede hop (“conditional jumps”): hvor addresses af den næste instruktion afhænger
af resultatet af en sammenligning. Derved bliver kun en del af programmet udført,
afhængigt af resultatet af sammenligningen. Dette er i modsætning til f.eks. Boolske
kredsløb, hvor alle operations (AND/XOR/OR etc.) bliver eksekveret, unanset in-
puttet. I zero-knowledge og sikker MPC (“Multiparty Computation”) literaturen har
det primære fokus været på beregninger som ikke har betinget udførelse, navnlig
funktioner representeret som kredsløb over et endeligt legeme. Dette betyder at hvis
funktionen er bedst representeret i en model med betinget udførelse, så vil det typisk
resultere i at alle mulige udførelser (“branches”) bliver eksekveret, hvorefter det
korrekte result bliver valgt ud fra inputtet. Dette er ineffektivt, fordi kommunikationen
og beviserens køretid er proportional med antallet af branches: i modsætning til
eksekvering af funktionen i en model med betinget udførelse, hvor kun en “branch”
(den aktive) bliver eksekveret.

Denne afhandling dækker teknikker til at bevise forgrening (“branching”) / disjunk-
tioner i zero-knowledge beviser, samt relaterede teknikker til at eksekvere forgrening
i multiparty computation. De følgende tre værker er blevet udvalgt til afhandlingen:
1. Stacking Sigmas: A Framework to Compose Σ-Protocols for Disjunctions. Foreslog
en konkret effektiv kompiler (Stacking Sigmas) til at konvertere Σ-protokoller til be-
viser for disjunktioner med logaritmisk overhead i antallet af klausuler. 2. Curve Trees:
Practical and Transparent Zero-Knowledge Accumulators. Bygger konkret effektive
kryptografiske akkumulatorer med effektive medlemskabsbeviser (en disjunktion over
elementerne af en mængde) fra commit-and-proof teknikker og en ny anvendelse
af elliptiske kurve cykler. 3. Secure Multiparty Computation with Branching. Kon-
struerer effektive protokoller til at eksekvere forgreninger (“if-statements”) over et
antal kredsløb i multiparty computation.

iii

Acknowledgments

The whole of the cryptography group at Aarhus University, a truly unique professional
and social environment filled with brilliant, kind and curious people. Among them,
my advisor, Jesper Buus Nielsen, for convincing me to do a PhD in the first place and
for being a great mentor throughout the process. Your enthusiasm for the whole of
cryptography and your desire to see it applied is inspiring.

Thanks to all my co-authors. In no particular order: Gabe Kaptchuk, Aarushi Goel,
Jesper Buus Nielsen, Nicholas Spooner, Abhishek Jain, Aditya Hegde, Matthew
Green, Nikolaj Schwartzbach, Gijs Van Laer, Matteo Campanelli, Simon Holmgaard
Kamp, Mark Simkin, Benedikt Wagner, Diego F. Aranha, Anca Nitulescu, Elena
Pagnin, Sophia Yakoubov. It has been a pleasure working with you all.

I would like to thank the wider cryptographic community and the International Associ-
ation of Cryptologic Research (IACR) in particular. In an era of academic rent-seeking,
it is remarkable to be in a field that has ownership of its own community and is commit-
ted to openly sharing their work, rather than hiding it behind expensive subscriptions
and charging exorbitant fees for publishing. As an undergraduate, showing up to
conferences and trying to learn, I was welcomed into the community, encouraged
to participate and learned that cryptographers are almost universally approachable,
down-to-earth, willing to explain and excited about cryptography as a field. There are
of course always things to improve, but it could also be so much worse...

I want to thank my family. My parents, for always supporting me and encouraging me
to pursue my interests – even if not fully grasping them at all times. My brother, for
being a great friend throughout my childhood.

And last, but not least, I want to thank my wonderful girlfriend, Juci. For keeping me
sane in times of stress, for giving me a world outside of cryptography, for being my
partner and being my best friend over the last couple of years. I will always remember
my time at Aarhus University as the time I met you.

Mathias Hall-Andersen,
Copenhagen, January 12, 2024.

v

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction to Cryptography 3
1.1 Notation . 3
1.2 Cryptography in a Nutshell . 3
1.3 Introduction to Proofs/Arguments 7
1.4 Multiparty Computation and Zero-Knowledge Proofs 14
1.5 Disjunctions & Branching Computation 15

2 Private Branching Computation 23
2.1 Disjunction Compilers: Stacking Sigma Protocols 23
2.2 Set Memberships: Curve Trees . 24
2.3 Oblivious Branching Computation: Branching MPC 25

3 Works Not Included in the Thesis 29

II Included Publications 33

4 Stacking Sigmas: A Framework to Compose Σ-Protocols for Disjunctions 35
4.1 Introduction . 35
4.2 Related Work . 39
4.3 Technical Overview . 40
4.4 Preliminaries . 47
4.5 Partially-Binding Vector Commitments 49
4.6 Stackable Σ-Protocols . 56

vii

viii CONTENTS

4.7 Self-Stacking: Disjunctions With The Same Protocol 69
4.8 Cross-Stacking: Disjunctions with Different Protocols 73
4.9 k-out-of-ℓ Proofs of Partial Knowledge 77
4.10 Measuring Concrete Efficiency . 79
4.11 Blum87 is Stackable: Proof of Lemma 2 82
4.12 Well-Behaved Simulators: Proof of Lemma 5 83
4.13 Security Proof for Cross-Stacking Compiler (Theorem 6) 84
4.14 Overview of [KKW18] and Proof of Lemma 3 85
4.15 Overview of Ligero and Proof of Lemma 4 88
4.16 Partially Binding Vector Commitments in the ROM 92

5 Curve Trees: Practical and Transparent Zero-Knowledge Accumulators103
5.1 Introduction . 104
5.2 Preliminaries . 108
5.3 Zero-Knowledge Set Membership 111
5.4 Curve Trees as Accumulators . 113
5.5 Correctness and Security . 117
5.6 Final Construction: Curve Trees with Compressed Points 121
5.7 VCash: Transparent and Efficient Anonymous Payment System . . 124
5.8 Implementation and Evaluation . 127
5.9 Accumulators . 132

6 Secure Multiparty Computation with Free Branching 133
6.1 Introduction . 133
6.2 Technical Overview . 136
6.3 Preliminaries . 145
6.4 Oblivious Inner Product . 147
6.5 MPC Interface . 148
6.6 Non-Constant Round Semi-Honest Branching MPC 150
6.7 Non-Constant Round Maliciously Secure Branching MPC 156
6.8 Constant Round Semi-Honest Branching MPC 161
6.9 OIP from Linearly Homomorphic Encryption 165
6.10 Implementation . 166

Bibliography 179

Part I

Overview

1

Chapter 1

Introduction to Cryptography

“Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.”
– John von Neumann (1951) on Pseudorandom Generators (PRGs) [Neu51]

1.1 Notation

We define NP relations by their polynomial time computable predicates R(x,w) 7→
{0,1}, rather than the more common definition of a relation as a subset of tuples.
This is done for convenience, as it allows us to unify notation across the Multi-Party
Computation and Zero-Knowledge sections. Throughout the thesis, λ denotes the
“computational security parameter” and κ denotes the “statistical security parameter”.

1.2 Cryptography in a Nutshell

Early Days. Cryptography, from the greek kryptós (hidden) and gráphein (to write),
originated as the study of “secret writing”, with what we today would classify as
symmetric-key encryption. Most laypeople, when they think of cryptography, think
of this type of encryption, whether it be the Caesar cipher or the Enigma machine.
In this classical form, cryptography has likely been around as long as writing itself,
however modern cryptography has its origins in the three decades of the 1970s, 1980s
and 1990s spurred by the discovery of public key cryptography. Which formalized
and expanded the field, most importantly, by introducing formal assumptions, security
definitions and proving security reductions. Taking cryptography from a bespoke art of
“seems to not be broken” to a rigorous science, this formalization of the field yielded an
explosion of new cryptographic primitives and constructions. Today cryptography is
perhaps best described as the constructive study of intractable problems: namely, what
schemes/protocols can we build assuming the existence of certain computationally
intractable problems or computationally indistinguishable/unlearnable distributions.
As a field, cryptography is therefore the polar opposite of algorithmics / cryptanalysis

3

4 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

GameOWF(λ ,A)

// Game picks a random preimage

1 : x $←− {0,1}λ

2 : y← fλ (x)

// Ask the adversary to invert the function

3 : x′←A (1λ ,y)

// Adversary wins if he finds any preimage

4 : if f (x′) = y : return 1
5 : else return 0

Figure 1.1: Inversion game for One-Way Functions

which aims to reduce the complexity of solving problems and of machine learning /
learning theory which aims to identify and learn distributions.

Cryptographic Assumptions and Games. Any non-trivial cryptography requires, in
particular 1 that P ̸= NP, famously an open problem in computer science, therefore,
cryptography crucially relies on unpoven conjectures in complexity theory. Cryp-
tography can only get off the ground if we assume the hardness of NP languages
with respect to some distribution over instances, or, even the polynomial-time indis-
tinguishability between distributions over two languages. Any such cryptographic
assumptions can be captured by the notion of a game played by a polynomially
bounded adversary A (a PPT Turing machine), the assumption is then simply a bound
on which any such adversary A could win the game. The most basic cryptographic
assumption is the existence of one-way functions (OWF), which is captured by the
assumption below:

Assumption 1 (Existance Of One-Way Functions.) There exists a family of polynomial-
time computable functions F = { fλ : {0,1}λ →{0,1}λ}, such that for all PPT ad-
versaries A , there exists a negligible function negl(λ) such that the probability that
A wins the game GameOWF in Figure 1.1 is negligible:

∀A ∈ PPT.∃negl(λ).Pr[GameOWF(λ ,A) = 1]≤ negl(λ)

One-way functions are about as simple as cryptographic assumptions get, but even in
this case note a proof of Assumption 1 would trivially imply P ̸= NP, let:

L = {(fλ (x), i,x1,...,i) | x ∈ {0,1}λ ,y ∈ {0,1}∗}

i.e. tuples of images, for which there exists a preimage x with a given prefix x1,...,i of
length i. Then it is clear to see if L ∈ P the adversary A can use the decider to do

1A necessary, but not sufficient condition.

1.2. CRYPTOGRAPHY IN A NUTSHELL 5

GameIND-CPA(λ ,A)

// Adversary picks two messages of equal length

1 : (pt0,pt1)←A (1λ)

2 : if |pt0| ̸= |pt1| return 0
// Game encrypts one of the messages at random

3 : k
$←− {0,1}λ

4 : b $←− {0,1}
5 : ct← Enck(ptb)

// Adversary tries to guess which message was encrypted

6 : b′←A (ct)

7 : if b′ = b return 1
8 : return 0

Figure 1.2: IND-CPA security game for a symmetric encryption scheme Enc

a binary search for the next bit xi of some preimage x. It is also obvious that x is a
certificate for the NP relation, hence if Assumption 1 is true, then L ∈ NP\P.

What Is Reasonable To Assume? It might seem strange to other mathematicians and
computer scientists to have an entire field which is entirely predicated on numerous
(strong) unproven and sometimes very specific conjectures in complexity theory: for
instance the conjectured hardness of certain problems in algebraic geometry. So what
are we “allowed” to assume? If we can just define a game for our constructions and
assume away the existence of any polynomial time Turing machines which may win
it, does cryptography become a vacuous endeavour? The answer is that it depends
on how weak/plausible the assumptions are. For instance, the existence of one-way
functions defined above is much more plausible, than the security of the whole of the
Transport Layer Security (TLS) protocol. In cryptography, the set of assumptions that
we are willing to make forms the set of axioms from which we can prove statements
(security of protocols). By expanding the set of cryptographic assumptions we are
willing to make, we can prove more and more protocols secure, in exactly the same
way that mathematicians can prove more and more theorems by expanding the set
of axioms they are willing to include, e.g. choosing whether to include Choice in
Zermelo-Fraenkel set theory. Making an additional cryptographic assumption, is then
equivalent to adding a theorem to the axiom set. Cryptographers, like mathematicians,
are therefore interested in proving security from as few/as natural axioms as possible:
meaning making as few and as weak/strong assumptions as possible.

Indistinguishablity as a Security Definition. A special case of games is indistin-
guishability games, in which the adversary A , called a distinguisher (sometimes
denoted as Dist) in this context, is given samples from one of two distributions Game0
and Game1, and must guess which distribution the samples are from better than ran-

6 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

dom guessing. Formally, the game flips a coin b $←− {0,1}, runs Gameb with A . The
adversary A then outputs a guess b′, and wins if b = b′. We say that two distributions
Game0 and Game1 are indistinguishable if no adversary A can win the indistinguisha-
bility game with probability better than 1

2 + ε . Various flavors of indistinguishability
are widely used:

Perfect Indistinguishability: In which ε = 0 and the adversary A is a computation-
ally unbounded Turing machine.

Statistical Indistinguishability: In which ε < 2−κ and the adversary A is a compu-
tationally unbounded Turing machine.

Computational Indistinguishability: In which ε = negl(λ), for a negligible func-
tion negl(λ) and the adversary A is a probabilistic polynomial time (in 1λ)
Turing machine.

For notational convenience, we will use Game0 ≈ Game1 to indistinguishability
between Game0 and Game1, with the type of indistinguishability being implicit: es-
sentially all definitions in cryptography come in a perfect, statistical and computational
flavor, depending on the classes of adversary A that is considered and his success
probability ε .

This general framework of indistinguishability games is a convenient way to
define security of cryptographic schemes and protocols for numerous reasons:

It is simple: It is easy to define and reason about, e.g. rather than trying to define what
it means for a scheme to be ‘secure’, we simply require it to be indistinguishable
from some trivially secure ideal scheme.

It is strong: Any reasonable definition of a ‘break’ for some scheme would imply the
existance of a distinguisher. e.g. if a symmetric encryption scheme is ‘broken’
in the sense that an adversary can decrypt a ciphertext without knowing the
key, for a set of weak keys with density ε , then we can trivially construct a
distinguisher that wins the IND-CPA indistinguishability game with probability
ε .

It composes: By relying on indistinguishability, we can “chain together” hybrid
distributions in which we switch parts of a larger protocol from one of the
two distributions to the other. For instance, in a security proof of a protocol,
we might create a hybrid in which we switch commitments to ‘real’ values
with commitments to random values, and then use indistinguishability of the
commitment to argue that the adversary cannot tell the difference between the
real protocol and this hybrid. In subsequent hybrids we might switch other parts
of the protocol, step-by-step, until we have arrived at the ideal world.

The universal use of indistinguishability as the basis of security definitions is what
has enabled us to build and prove security of complex protocols from simple building

1.3. INTRODUCTION TO PROOFS/ARGUMENTS 7

blocks. Now that we have an idea of what the axioms/assumptions/theorems/games
are, we can start to define what a proof is in this context.

Security Proofs as Karp Reductions. By defining both assumptions and security
definitions as games, we can define security proofs as reductions between games: if
the A succeeds in Game(Primitive) with probability ε , then we can construct an A ′

that succeeds in Game(Assumption) with probability ε ′. The form that these reductions
take are essentially Karp reductions, except that the reduction is interactive, may be
randomized and may rely on rewinding.

Running Time of Games. In the definition of games, we have not specified the
running time of the game itself. Since security proofs are Karp reductions it is natural
that the running time of the game is polynomial in λ however, as we shall briefly
cover in our discussion of non-falsifiable assumptions this is not always the case.

1.3 Introduction to Proofs/Arguments

What constitutes a proof? What does it mean to prove something? In mathematics/-
logic, a proof is a sequence of applications of axioms and previously proven theorems.
This notion of a proof might raise a few questions:

What about trivial statements? A mathematical proof convinces us that a statement
is true, but it might be non-constructive: the proof might not yield a solution to the
problem. Take prime factorization for example: every integer has a prime factorization;
by definition. However, it there is no efficient (classical polynomial time) algorithm
to recover the prime factorization of an integer. Consequently, the verifier might not
be satisfied by the proof that there exists a prime factorization of:

6250771853489829185205118978883081027626039076873903567516827301
0628257014446164334526839642029665862262223271941617746049101535
4373721896821675401483358502060696184268683410176944812620401112
2833362271530587312324855959685753087422939304414125190688533816
7965234168003511900629645300265679792574058259314829

Instead, intuitively, the verifier would like to be convinced, that whomever pro-
duced the proof, knows the prime factorization. It is not just arbitrary statements like
the above – you are unlikely to win any Fields medals for a constructive proof that
there exists a prime factorization of the above number. Another classical example is
the Gilbert-Varshamov bound [Gil52] in coding theory, which (informally) states there
exists good (linear) error correcting codes for any alphabet, however, the probabilistic
argument of Varshamov [R.57] is non-constructive and a substantial amount of effort
is spend in coding theory looking for constructive families of codes trying to meet
this upper bound. In this case, the verifier would have little interest in a proof that
there exists good codes, but would like to be convinced that the prover knows a family
of good codes.

8 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

What about bounded verifiers? In mathematical proofs, we are seldomly explicitly
concerned with the computational complexity required to verify a proof, usually, a
mathematical proof is in the form of an NP certificate, e.g. a formal proof in a theorem
prover [The] [WK19], consisting of a sequence of derivations applying a set of axioms
one-by-one reexecuted by the verifier. However, this is quite restrictive: there might
be true and interesting propositions whose proof is beyond the computational ability
of the verifier. For example, extending the notion of "proof" to allow interaction with
the prover and an arbitrarily small soundness error, allows a polynomial time verifier
to verify propositions provable in PSPACE [Sha90] [LFKN90] – rather than NP as in
the case of traditional proofs. Goldwasser et al. [GKR08] “exponentially scaled down”
the result above in term of both prover/verifier complexity, showing that for log-space
uniform layered circuits of size S with depth d taking n inputs, a polynomial time
prover can prove satisfiability of the circuit to a verifier running in O(n+d ·polylog(S))
time; exponentially faster than computing the circuit. The underlying multivariate sum
check and its various optimizations [CMT12] [Tha13] [XZZ+19] has subsequently
been used extensively in the SNARK literature [Set20] [Tha23].

What about bounded provers? Does a proof need to be unconditionally sound?
Namely, can a proof be sound conditioned on cryptographic assumptions – assuming
the prover is restricted. Additionally, it might be interesting to study different notions
of proofs in idealized models, for instance the PCP model, or the Random Oracle
model.

How much do you learn from a proof? Mathematical proofs are often quite insight-
ful, and can give us a deeper understanding of the problem at hand. However there is
nothing, a priori, that says that this always needs to be the case: a proof merely needs
to convince us that the proposition is true. In fact, it might be interesting to construct
proofs which reveal nothing beyond the truth of the proposition. In that case, how
should we define this?

Proofs in Cryptography

All of these questions motivate the notion of proofs and arguments as defined in
cryptography. A definition much broader than the classical notion of a proof in
mathematics. Broadly speaking, a cryptographic proofs or argument, is a protocol
between a prover and a verifier, possibly in some idealized model and possibly under
cryptographic assumptions, where the prover tries to convince the verifier of the
truth of a proposition. Besides being ‘convincing’, it can have any number of other
properties outlined in the previous section. For instance, it may take the verifier
exponentially less time to verify the proof than it took the prover to produce it, it
may ‘reveal nothing’ to the verifier and it may be sound only under cryptographic
assumptions – conjectured intractability of some language.

For all of this to make rigorous sense, we need to define these properties formally:
so that we can state, in concrete terms, what some protocol achieves and formally
proof that it does so. Although constructions are what keeps cryptography alive and

1.3. INTRODUCTION TO PROOFS/ARGUMENTS 9

interesting, arguably the most beautiful part of cryptography is its definitions. It is
what allows us to confidently construct secure constructions – because we have a clear
definition of what it means to be secure. Cryptography is full of elegant definitions,
many of which, once understood, can fundamentally change the way we think about
the world. I would argue that most brilliant among them is the notions of simulation
and extraction, which capture the opposing notions of learning nothing and knowing
something.

Simulation: What does it mean to learn nothing?

Suppose we wanted to create a protocol in which we would like to argue that a party
in the protocol ‘learns nothing’. How do we formalize ‘learning nothing’?

“Is is an intresting question how zero-knowledge should be defined.
. . .
In fact the prover should not reveal anything which should help the
verifier compute anything much faster than before.”
– Goldwasser, Micali, Rackoff [GMR89]

The way to make this inuition into a security definition is to require the existance
of an efficient algorithm, which, given only blackbox access to the verifier produces a
transcript which is indistinguishable from the real transcript with the honest prover
provided with a witness. Inuitively, suppose the verifier could have learned anything
from communicating with the prover, then he could have learned the same thing by
simply simulating the prover himself. Therefore, whether the verifier interacts with
the honest prover or not, could not possibly allow him to learn anything he could not
have learned by himself. In symbols: there exists a PPT algorithm Sim:

{T |T ← ⟨V∗(x),P(x,w)⟩} ≈ {T |T ← SimV∗(x)}

Before we continue, let us make a few observations:

1. The verifier is an arbitrary Turing machine. A weaker notion, Honest-Verifier
Zero-Knowledge (HVZK), primarily used for public-coin protocols, is that the
verifier V∗ is the honest verifier V – whose correct behavior might be imperative
to ensure that it ‘learns nothing’. This definition is motivated by the observation
that for public coin protocols, the verifiers behavior can be publicly computed
given the public randomness and that restricting the random tape of the verifier,
e.g. by sampling it using a Random Oracle (applying Fiat-Shamir) or requiring
that the verifier commits to his random tape before the protocol execution,
is therefore sufficient to get the stronger notion. For zero-knowledge, a well-
known lower bound by Goldreich and Krawczyk [GK90] states that the minimal
number of rounds required is 5, however, HVZK can be achieved in 3 rounds.

2. The running time of the simulator is polynomial in the running time of the
(possibly malicious) verifier, not the honest prover. The reason for this strict

10 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

requirement on the simulators efficiency is the intuition for the zero-knowledge
definition in the first place: the verifier should not learn anything he could not
have computed himself. This intuition goes out the window if the simulator is
exponentially more powerful than the verifier, as in the case of the zkSTARKs
simulator, in which case he could not possibly produce the transcript himself.

3. By changing the notion of indistinguishablity (≈), we obtain different flavors
of zero-knowledge: perfect, statistical and computational zero-knowledge re-
spectively. In the case of computational zero-knowledge, the malicious verifier
is restricted to running in time polynomial in the security parameter and the
running time of the distinguisher is polynomial in the security parameter.

The reader should note that this definition satisfies the intuition provided above
by Goldwasser, Micali and Rackoff [GMR89] in a formal sense: if there exists
an algorithm A which, when interacting with the prover res← ⟨A (1λ),P(x,w)⟩
can compute results res from some distribution, then there also exists an algorithm
A ′ = ⟨A (1λ),Sim(x)⟩ which does not interact with the prover and yet produces
outputs of an indistinguishable distribution with at most a factor Poly(T) required to
run the simulator (rather than the honest prover): having access to P(x,w) speeds up
the computation of res by at most a polynomial factor. As a corollary, note that for
languages in P, the definition is vacuous.

Extraction: What does it mean to Know Something?

Now that we a reasonable idea of what it means for the (possibly malicious) verifier
to “learn nothing” during the protocol execution, we should tackle the problem of
defining what we mean when we say that the prover “knowns” a solution/witness.
The central idea for formalizing this is the notion of extraction, which, informally
stated, means that we can convert a prover P∗ (some arbitrary Turing machine, not
necessarily the honest prover) into another algorithm E , the knowledge extractor,
which outputs a witness w with (roughly) the same probability and running time as the
prover P∗ convinces the verifier. Although Goldwasser, Micali and Rackoff [GMR89]
also defined a notion of knowledge soundness, the definition widely in use today is
due to Bellare and Goldreich [BG93] a few years later. The major difference between
the definitions of Goldwasser et. al and Bellare and Goldreich [BG93], is that the
latter states that the running time of the extractor may depend inverse polynomially
on the success probability of the malicious prover (not just its running time), but in
return the extractor E must always produce a witness for all provers P∗ which succeed
with probability ε > 2−κ (the knowledge error): even if ε is negligible in the security
parameter, meaning the extractor E might have exponential running time in λ .

Knowledge Soundness. Intuitively, computing a witness for the statement can be
achieved in a relativized world with oracle access to a prover P∗, in time that is inverse
polynomial in the success probability of the prover. Formally: there exists an extractor
E such that for all provers P∗ convincing the verifier with probability ε ∈ (2κ ,1]. The

1.3. INTRODUCTION TO PROOFS/ARGUMENTS 11

extractor E P∗ ∈ Poly
(
|x|

ε−2κ

)
with oracle (rewinding) access to the prover P∗ recovers

a witness w with probability 1:

∃E .Pr
[
⟨V(x),P∗(1λ)⟩= 1

]
= ε =⇒ R(x,w) = 1 where w← E P∗(x)

Where Poly is some fixed polynomial. Several observations should be made about
this definition, because it is quite subtle:

1. The probability ε is over the verifiers random tape.

2. The prover P∗ is an arbitrary Turing machine, not the honest prover P.

3. The order of quantifiers is very important: the extractor is chosen before the
prover, i.e. ∃E .∀P∗ ∈P.. Which means that the extractor must work for every
prover and cannot rely on the code of the prover. This is called blackbox/uni-
versal extraction, it is the cleanest and most natural definition of knowledge
soundness as defined by Bellare and Goldreich [BG93]. However, it is not
the only reasonable definition: for instance schemes relying on non-falsifiable
so-called ‘knowledge assumptions’, e.g. Knowledge of Exponent Assump-
tions [Dam92] will have the quantifiers swapped, requiring the extractor to
rely on the code of the prover: meaning the extractor either explicitly takes the
prover as input, or, is quantified after the prover (∀P∗.∃E .)

4. The extractor running time is limited by the provers success probability, not
the provers running time. If on the other hand, the definition allowed the
extractor to run in the same time as the prover, then the definition would
become vacuous when the prover is unbounded: the extractor could simply
brute force a witness. This is one of the subtle nuances in the definition of
Bellare and Goldreich [BG93].

Note that the trivial proof, where the prover simply sends the witness w, is
clearly knowledge sound with knowledge soundness error 2−κ = 0. Observe also
that mathematical proofs in general are not knowledge sound, since convincing the
verifier of the truth of a statement does not imply that the prover knows a witness:
suppose we have a cyclic group G = ⟨G⟩ where computing discrete logarithms is
hard and we wish to prove that a discrete logarithm δ exists for a given element H
i.e. H = [δ] ·G. Since every element of a cyclic group by definition has a discrete
logarithm with respect to the generator G, the mathematical proof of the existence of
a discrete logarithm is trivial. Therefore the proof above is sound, however, it would
not allow the extractor E to compute a witness: it is not knowledge sound.

One of the most wondrous connections in cryptography is the counter intuitive fact
that the two notions, zero-knowledge and knowledge soundness, though seemingly
diametrically opposed, are in fact not mutually exclusive: it is possible to know
something, convince someone else that you know it and for them to learn nothing
from the interaction. The astute reader might already have noticed that if a protocol is

12 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

both zero-knowledge and knowledge sound, then the protocol must necessarily have
strictly non-zero knowledge error 2−κ : a malicious prover P∗ could guess the verifiers
random tape, run the zero-knowledge simulator and hope that the verifier picks the
same random tape as in the simulation.

Who Is The Prover Anyway? In cryptography, we talk about extracting from
the prover, an arbitrary Turing machine, but in the real-world, where our protocol
will be run, the prover could produce responses by arbitrary means e.g. asking a
friend, spinning the roulette or by some complicated quantum process. Thus the
knowledge soundness definition implicitly assumes than any such behavior can be
captured as a Turing machine, consequently, philosophically cryptographers subscribe
to the Church-Turing thesis [van90] – even asking your friend can be emulated by
a (randomized) Turing machine. Therefore the prover P∗ is not a person or some
computer with an internet connection, but actually a Turing machine emulating the
(observable) universe: in an epistemological sense, knowledge soundness then states
that it should only be possible to convince the verifier with noticeable probability
in universes which are also be capable of computing the witness i.e. the witness
might not presently exist on some hard drive or in someones head, but it could be
materialized by the universe.

Idealized Models and Non-Falsifiable Assumptions. So far, the story about cryp-
tography outlined in this thesis is an elegant one: that of efficient games, played
by standard (non-oracle) Turing machines (adversaries). We call such assumptions
falsifiable [GK16] [GW11] [Nao03], meaning, at the end of the game, the (efficient)
challenger can verify whether the adversary won the game. The assumption states
that the adversary has at most negligible winning probability in the game. Unfortu-
nately, not all cryptographic assumptions used in the literature are this elegant. A
common example includes Knowledge-of-Exponent Assumption (KEA1) introduced
by Damgård [Dam92], which states that for a (family of) cyclic groups G: if there
exists a PPT algorithm A which given W,G ∈G, produces (A,B)←A (W,G) with
A = [r] ·W and b = [r] ·G, then there exists a PPT A ′ which given the random tape of
A additionally outputs r: (A,B,r)←A ′(W,G). This assumption is non-falsifiable,
because the challenger cannot efficiently verify whether the adversary won the game,
because doing so requires showing the non-existence of the efficient algorithm A ′;
which cannot be done efficiently. It is easy to see how the assumption that A ′ exists
is useful when constructing the extractor: without supposing the existence of such an
algorithm, the extractor would have to compute the discrete logarithm in G to recover
r, meaning its running time would be exponential in the security parameter. Alterna-
tively, non-falsifiable assumptions might also restrict the set of adversaries considered,
e.g. the Algebraic Group Model [FKL18], which restricts the set of adversaries (e.g.
malicious provers P∗) to be so-called ‘algebraic’, meaning the adversary returns a
linear combination of previously provided group elements for any group element
produced during the protocol. In reality, this implicitly assumes that any efficient
adversary relevant to the protocol could be converted into an algebraic one – which re-
quires assuming the existence of another PPT algorithm which additionally computes

1.3. INTRODUCTION TO PROOFS/ARGUMENTS 13

the linear combination efficiently, analogous to the KEA1 assumption outlined above.
Another option is to have protocols in idealized models, i.e. models in which

the adversary/challenger might be oracle machines. Common examples include the
Random Oracle Model (ROM) [BR93] where the parties have join query access to an
exponentially large table of random bit strings and the Generic Group Model(s) (GGM)
of Shoup [Sho97] and Mauer [Mau05] where parties have ‘blackbox’ access to a group
via the oracle, either as a random encoding of a cyclic group (Shoup) or via labels
for group elements (Mauer), with Shoup’s model being substantial stronger [Zha22]
[ZZK22]. In these settings the extractor controls the oracle i.e. may observe queries
and produce responses. For protocols proven secure in such idealized models, the
natural question is how the security of schemes in the idealized model translates to the
real world (standard model) when the oracles are heuristically instantiated with hash
functions and groups. Indeed there exists (contrived) protocols in the ROM which are
insecure when the random oracle is replaced by any hash function [CGH98]. However
these feared ‘real-world breaks’ has not widely manifested themselves in practice,
as such, proofs in the ROM/AGM/GGM at least seem like reasonable evidence for
the security of the protocol in the standard model when the oracles are heuristically
instantiated. Furthermore, in addition to enabling more elegant/natural protocols, the
use of idealized models and non-falsifiable assumptions is sometimes unavoidable.
Most notably in the case of non-interactive succinct arguments (SNARGs2), where the
landmark result of Gentry and Wichs [GW11] shows the impossibility of constructing
(publicly verifiable adaptively secure) SNARGs from falsifiable assumptions.

How Small Can a Proof/Argument of Knowledge Be? In the case of straight-line
extractable proofs, the size of the proof is lower bounded by the size of the witness: the
extractor is only provided with a transcript (and possibly a CRS trapdoor), hence the
communication between the prover and verifier must be large enough to distinguish
each witness for the relation – for obvious information theoretic reasons. However
in the cases where the extractor can rely on rewinding, where the protocol is in an
idealized model (e.g. the ROM) or depends on non-falsifiable assumptions, the size
of the transcript might be much (much!) smaller than the witness. In these cases the
extractor can extract a witness either by:

1. Extracting the witness by rewinding.
The knowledge extractor might reset the prover to a previous state in the protocol
execution and can use this to extract the witness piece-by-piece, by resetting the
prover to a previous state (without changing the random tape) and observing
the resulting transcripts for multiple different challenges. This is the type of
extraction outlined in the definition above.

2. Applying knowledge assumptions to the prover.
Essentially assuming that there exists an efficient algorithm, which in addition
to the proof also outputs (values related to) the witness. The non-trivial aspect

2Succinct Non-interactive Arguments; the argument is not zero-knowledge and only has regular
soundness (no knowledge extractor).

14 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

of this strategy lies in the fact that the knowledge assumption is not with regards
to the whole proof system3, but instead wrt. components of the system, e.g.
the group operations as in the AGM and then leveraging that to construct a
knowledge extractor for the protocol.

3. Observing queries to the oracle in an idealized model.
The communication/number of queries made by the prover to the oracle might
be much greater than the amount of communication between the prover and
verifier.

Notation. In the sections that follow it is convenient to have a succinct notation for
zero-knowledge proofs which allows specifying which parts remain secret and which
are public. Throughout the thesis, we will use the style of Camenisch and Stadler.

Camenisch-Stadler Notation. In the context of zero-knowledge proofs, we will often
used Camenisch-Stadler notation [CS97] (knowledge specification sets) to describe
relations being proved and which parts constitute the statement and witness. The
notation takes the following form {(w) : R(w,x)}, with everything not in the tuple
being public. As an example, the following is the Camenisch-Stadler notation for
a Schnorr proof of knowledge of a discrete logarithm: {(δ) : H = [δ] ·G} – where
x = (H,G) ∈G forms the statement and w = δ ∈ Zp forms the witness. The notation
above deviates slightly from the original Camenisch-Stadler notation, we also omit
the types of the variables (as above) when clear from the context. In some informal
contexts we will also abuse this notation to refer to a function computed inside a
multi-party computation protocol (covered below), in which case the witness (tuple)
is the private inputs to the function provided by the parties.

1.4 Multiparty Computation and Zero-Knowledge Proofs

Maliciously secure multiparty computation (MPC) is in some sense a generalization
of zero-knowledge proofs of knowledge, in which a single party holding an input w
to convince a verifier that the function R(x, ·) evaluated to 1 on w, i.e. R(x,w) = 1.
MPC expands this by enabling n parties P1, . . . ,PN holding private inputs w1, . . . ,wn

to jointly compute a functions f1, . . . , fn on their inputs, and for each party Pi to learn
oi = fi(w1, . . . ,wn)., Indeed (interactive) zero-knowledge proofs can be recovered as
a special case where n = 2, in which player 1 is the prover P1 = P, player 2 is the
verifier P2 = V, the function f1 is constant f1(w1,w2) = 1 and the function f2 is the
predicate of the relation f2(w1,w2) := R(w1,x).

Security Definition of MPC. With this in mind, it should come as no surprise to the
reader that the security notions of MPC and ZK are essentially identical; although
more complex owning to the generality of MPC. Intuitively the security goal for MPC

3You could always make a knowledge assumption about the concrete proof system, meaning that
the if a prover computes a proof, then there also exists an efficient algorithm outputting a witness; but
that would not be very convincing, we want to prove this from a simpler knowledge assumption.

1.5. DISJUNCTIONS & BRANCHING COMPUTATION 15

is that any coalition I ∈ C of corrupted parties from a set of tolerated corruptions C ,
should be unable to learn anything beyond what can be inferred from the outputs of
the corrupted parties {oi}i∈I . This is formalized, like zero-knowledge, by the notion
of simulation: whereas in the case of zero-knowledge the view of the verifier (the
transcript) must be simulatable given only the statement x, in the case of MPC the
joint view of the corrupted parties {Pi}i∈I must be simulatable given only the outputs
of the corrupted parties {oi}i∈I for any inputs of the honest parties {wi}i/∈I .

Zero-Knowledge Proofs from MPC. The lines between these notions are further
blurred, on one hand, because any MPC protocol can be turned into a 3-round compu-
tational zero-knowledge proof with the use of cryptographic commitments [IKOS07],
and on the other hand, what is a zero-knowledge proof if not a secure 2PC protocol
where only one party has input and the output is a single bit? Conversely, proof systems
with multiple non-colluding verifiers, notably the Linear PCP literature [BBC+19],
as well as recent zero-knowledge proofs based on vector oblivious linear evaluation
correlations [YSWW21], a common preprocessing step in many dishonest majority
MPC protocols [KOS16] [HOSS18] burry the lines “in the other direction”.

1.5 Disjunctions & Branching Computation

Picking up speed and getting down to the thesis-specific details, the primary topic
of this thesis is techniques for efficient privacy preserving computation of branching
computation. Deliberately keeping it vague for now, this means that there are two or
more possible “options” and the selected option must remain private. In the context of
zero-knowledge proofs, this means that the prover knows which “option” was selected
from a set, convinces the verifier that the option was selected from the set and that it
satisfies some additional constraints, while the verifier learns nothing about the option
selected. Broadly speaking, the techniques, namely what constitutes an “option” and
what constitutes a “set”, can be divided into two categories:

Disjunctions over Statements.

The first category is disjunctions over statements, in which the relation is fixed, the
“options” are statements x and the “set” is the set of “allowed” statements X. In
Camenisch-Stadler notation:

{(w,x) : x ∈ X∧R(x,w) = out}

With “out= 1” for zero-knowledge and the function output in case MPC. Note that
the chosen statement x is part of the witness, while the relation (e.g. R1CS matrixes
or circuit) is fixed. Examples of such “disjunctions over statements” include set
memberships and lookups, further examples are covered in the subsequent section.

16 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

Disjunctions over Relations.

The second category is disjunctions over relations, in which the relation is not fixed,
the “options” are NP relations R and the “set” is the set of “allowed” relations/clauses
in the disjunction R. In Camenisch-Stadler notation:

{(w,R) : R ∈R∧R(x,w) = out}

With “out= 1” for zero-knowledge and the function output in case of MPC. Note that
the chosen relation R is part of the witness, while the instance (i.e. public inputs) is
fixed. Examples include ‘proofs of partial knowledge’ [CDS94] and works such as
SubplonK [CGG+23], further examples are covered in the subsequent section.

Relation Between Disjunctions over Relations/Statements.

In the case of both zero-knowledge proofs and multi-party computation, it is possible
to generically transform between disjunctions over statements and disjunctions over
relations. It is possible to obtain a disjunction over statements from a disjunction
over relations, by simply hardcoding the statements into the relations. In the converse
direction, it is possible to construct a disjunction over relations using universal cir-
cuits, however, this introduces a O(logn) blowup in the circuit size [Val76] [KS16].
Although not a big problem asymptotically, it is concretely rather costly. Because
of this difference in efficiency, with disjunctions over relations generally being more
powerful, we find it useful to distinguish between these two (informal) notions when
comparing works in the literature.

Landscape of Branching Computation in Zero-Knowledge Proofs.

To provide context for the publications included in this paper, this section includes
an overview of the landscape of branching computation in cryptography, in both
the context of zero-knowledge proofs (succinct and not), as well as multi-party
computation.

Compilers and Sigma Protocols. For Σ-protocols, three move protocols with special
soundness, Cramer, Damgard and Schoenmakers [CDS94] introduced an elegant com-
piler which transforms any Σ-protocol using a maximum distance separable (MDS)
code of dimension ℓ− t into a Σ-protocol for the t-threshold relation without addi-
tional cryptographic assumptions. When instantiated with the parity-check code, this
compiler yields a Σ-protocol for disjunctions over relations. The primary ‘drawback’
of this compiler is that the communication complexity is linear in the number of
clauses ℓ. Motivated by the desire to construct ring signatures, Abe et. al [AOS02]
proposed a compiler which avoids the need to send both first and last round message
of the Σ-protocol as done in CDS, compared to the CDS compiler, the saving is a
small concrete factor: roughly a factor of 2. Motivated by techniques from stacked gar-
bling [HK20b] and their possible applications in Σ-protocols, Goel et. al [GGHAK22]
recently introduced the “Stacking Sigmas” compiler (included in this thesis) which has

1.5. DISJUNCTIONS & BRANCHING COMPUTATION 17

a logarithmic (as oppose to linear) communication complexity in ℓ with small concrete
overhead. Unlike CDS, this compiler requires additional cryptographic assumptions
and structure of the Σ-protocols being compiled.

Succint Proofs with Branching. Recent work by Goel et. al [GHAKS23] observed
that a variant of the Stacking Sigmas compiler [GGHAK22] can be applied to succinct
proofs, wherein the complexity of the simulator can often be made poly-logarithmic in
the size of the relation. Interestingly, the transformation requires changes to the Fractal
Holographic RS-IOPP [COS20]: the verifiers queries to the holographic oracles during
the “‘holographic lincheck” cannot be simulated for different relations. The resulting
proofs are not succinct in the number of clauses ℓ and the prover complexity is linear in
ℓ but essentially independent of the size of the unsatisfied clauses. Recently Choudhuri
et. al [CGG+23] introduced SubplonK, which is a variation of PlonK [GWC19] which
supports disjunctions over “basic-blocks”, the concrete improvement over a naive
disjunction in PlonK is a relatively small constant factor (≈ 5).

Vector Oblivious Linear Evaluation (VOLE) Based Proofs with Branching. Vector
Oblivious Linear Evaluation (VOLE) based proofs [DIO21] [BMRS21] [WYKW21]
[YSWW21] [DILO22] use VOLE-correlations as cheap linearly homomorphic com-
mitments: a VOLE-correlation is a pair (v,∆ · v+m) (∆,m) – a standard “Infor-
mation Theoretic MAC” (IT-MAC) often employed in MPC protocols. The pri-
mary advantage of VOLE-based commitments is their concrete efficiency when
combined with recent advances in OT-extension/Pseudorandom Correlation Genera-
tors (PCGs) [IKNP03] [BCGI18] [YWL+20] [Roy22]: committing/opening requires
just a few field operations. The primary drawback is that the communication is linear
and the protocols are designated verifier (except with the recent work of Baum et.
al [BBD+23]). Some works in this literature also address the question of how to
efficiently prove disjunctions (with sub-linear communication / computation), notable
works include Mac’n’Cheese [BMRS21] which allows the prover to prove that one of
ℓ clauses in a (possibly nested) disjunction is satisfied with sub-linear communication,
unfortunately, the scheme follows an “execute garbage on all unsatisfied” clauses
approach, where after the prover has a zero commitment for the satisfied clause and
a random commitment for the unsatisfied clauses, it then proves that at least one of
the commitments is zero. The result is that both prover and verifier complexity is
linear in ℓ: since both must execute all clauses. Recently the computational com-
plexity of the prover and verifier was improved by Batchman & Robin by Yang et.
al [YHH+23] and concurrently in Dora [GHAK23] by Goel et. al. When the same
set of clauses are executed many times, the marginal cost of a disjunction over the
clauses is O(ℓ+ |branch|) and O(|branch|) for Batchman and Dora respectively,
where |branch| is the maximum size of any clause in the disjunction. Both works are
concretely efficient.

Lookup Arguments for SNARKS. Another related line of work is the use of lookup
arguments, which enables the prover to do lookups in either static tables (where the
verifier/indexer precomputes the table) or dynamic tables (where the prover can insert
elements into the tables, subject to some constraints). Notable works include the recent

18 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

line of lookup arguments for SNARKs with PlonKish [GWC19] (or CCS [STW23])
arithmetization staring with Arya [BCG+18], Plookup [GW20] and more recent
Cached Quotients (qc) [ZBK+22] inspired by the “logarithmic derivative” techniques
of Haböck [Hab22] and Eagen [Eag22]. In practical applications, static lookups
have primarily been used to speed up non-algebraic operations e.g. foreign field
operations, bit decomposition [BCG+18], hash function evaluation and fixed-based
elliptic curve operations [HBHW21], while dynamic lookups has found extensive use
in virtual machine emulation e.g. efforts to emulate the Ethereum Virtual Machine in
a SNARK [zke23], since it enables a prover to simply lookup the result of the current
instruction in a table containing only applications of the particular instruction – rather
than execute every possible instruction at every step.

Accumulators and Zero-Knowledge Membership Proofs. For large dynamically
updated tables/sets, it is desirable that the provers complexity is poly-logarithmic
in the set size. The most common approach to this problem is to use a crypto-
graphic accumulator [Bd94] combined with a zero-knowledge proof that the prover
knows an opening to an (secret/witness) element in the (public/instance) accumula-
tor. This folklore approach of proving accumulator membership in zero-knowledge
has been widely applied, for a variety of accumulators, mostly RSA-based and
Merkle trees with various collision resistant hash functions e.g SHA-256 [BCG+14],
Pedersen hashes [HBHW21] and ‘SNARK-friendly’ hash functions (e.g. Posei-
don [GKR+21]). Such membership proofs has been used/optimized in cryptocurrency
applications e.g. Zerocoin [MGGR13], Zerocash [BCG+14], Veksel [CHA22b] and
Curve Trees [CHA22a]. Another notable work is Caulk [ZBK+22], presented as a
lookup argument, but included here under membership proofs, because the provers
complexity is sublinear in the table size. However, one notable drawback is that like
the other lookup arguments, the structured reference string is linear in the table size –
as oppose to polylogarithmic as for the accumulators outlined above.

SNARKs for RAM programs. SNARKs for C [BCG+13] which proves execution of
a very simple RAM machine (TinyRAM) inside a SNARK. An alternative approach
was taken in Buffet [WSR+15] which branches over basic blocks directly (a basic
block is a sequence of instructions with no branches), this avoids the need to repeated
prove the fetch-and-decode part of the TinyRAM machine. The disadvantage of this
approach is that the setup is not universal, i.e. the CRS depends on the program being
executed as oppose to the approach taken by Ben-Sasson et. al. [BCG+13], in which
the CRS only depends on an upper bound on the execution time and the architecture
of the machine (TinyRAM). Recently, industry efforts motivated by blockchain appli-
cations have constructed SNARKs for far more complicated instruction sets, including
the RISC-V instruction set [JB23] and the Ethereum Virtual Machine [zke23]. The
practicality of these efforts is largely due to the use of lookup arguments, “SNARK-
friendly” hash functions and the substantial improvements in the SNARK literature
during the last ten years in general.

Non-Uniform IVC and PCD. In 2008 Valiant [Val08] introduced Incrementally
Verifiable Computation (IVC) which enables a prover to incrementally prove the

1.5. DISJUNCTIONS & BRANCHING COMPUTATION 19

execution of a Turing machine: given a proof of the execution of the first n steps,
the prover can efficiently extend the proof to n+1 steps. The construction relies on
a tree of Micali CS proofs [Mic00], which in turn are constructed from extractable
PCPs and random oracles. From a theoretical perspective, this leads to a problem: as
CS proofs are used to prove the execution of the CS proof verifier, however the CS
proof verifier is not a standard Turing machine, but rather an oracle Turing machine
with access to a random oracle. Heuristically, this is overcome by instantiating the
random oracle with a cryptographic hash function and assuming that the resulting
CS proof is a SNARK in the standard model. Chiesa and Tromer generalized the
notion of IVC to the setting of arbitrary graphs of computation with the introduction
of Proof-Carrying Data (PCD) [CT10], however, to avoid the non-blackbox use
of a random oracle in Valiant’s construction and to achieve a very efficient online
extraction required to ensure that the running time of the extractor does not grow
exponentially in the recursion depth (which was logarithmic in Valiant’s construction),
their PCD construction relies on a signed-input-and-randomness oracle which can be
seen as a form of random oracle which additionally signs the query/response pairs
enabling a verifier to check the response without access to the oracle. Subsequently
Bitansky et. al [BCCT13] showed how to bootstrap any preprocessing SNARK
into a PCD scheme, however the resulting scheme only works for constant depth
recursion as the extractor for the PCD scheme is obtained via recursively composing
the SNARK extractor, leading to an exponential growth in the running time of the
knowledge extractor. The first "practical" (read “runs on a computer”) application
of this framework was obtained by Ben-Sasson et. al [BCTV14a] from cycles of
pairing friendly curves, the primary hurdle in terms of efficiency is that the only
such cycles of curves have a low embedding degree k, meaning the field of the
curve Fq must be large to obtain a reasonable security level in the presence of an
efficient mapping into F∗qk , in practice around > 700 bits for MNT curves at ≈ 100
bits of security, which makes operations on the curve expensive, in particular the
pairing operation which is proven in-SNARK. In 2019, Ben-Sasson et. al [BBHR19]
applied the same techniques to STARKs [BBHR18], similarly Chiesa et. al [COS20]
constructed a holographic RS-IOP also compiled with the FRI proximity testing, both
construct a PCD scheme without the need for a trusted setup with practical efficiency
by heuristically instantiating the random oracle with “SNARK/STARK-friendly” hash
functions [AD18] [GKR+21]. Recently, the introduction of split/atomic accumulation
based PCD/IVC protocols starting with Halo [BGH19] and the generalization of
accumulation schemes4 [BCMS20] [BCL+21]. has lead to a cambrian explosion of
practical IVC/PCD schemes from (pairing free) cycles of elliptic curves, notable
works include Nova [KST22] (IVC) & SuperNova (Non-Uniform IVC) [KS22],
HyperNova [KS23] (PCD for CCS relations) and Protostar [BC23]. From a theoretical
perspective, one interesting aspect of these recent protocols protocols is that (unlike
the earliest works) they all suffer from an exponential loss in knowledge soundness
in the recursion depth; since the extraction technique relies on recursive rewinding.

4No relation to cryptographic accumulators.

20 CHAPTER 1. INTRODUCTION TO CRYPTOGRAPHY

Nonetheless, the protocols does not seem to suffer any loss of security in practice and
has been deployed in blockchain-related applications [min23].

Landscape of Branching Computation in MPC.

For MPC branching computation is often much efficient than in Zero-Knowledge
Proofs, since no single party knows which clause is taken and on which input it is
executed.

Private Function Evaluation. In Private Function Evaluation (PFE) [KM11, MS13,
MSS14, HKRS20] a single party holds a description of a function f , and the other
parties hold inputs x1, . . . ,xn. The goal of PFE is to compute y = f (x1, . . . ,xn) without
revealing f or any of the xi – beyond what can be simulated given y. One can
think of a setting where one of the parties holds some proprietary function f e.g.
a machine learning model, and wishes to make this function available to the other
parties without revealing the function. Private function evaluation differs from the
settings we consider in this thesis in that the function is unconstrained and known to a
single party, therefore, PFE is in may ways easier than the setting of branching over
relations. Nevertheless, the work of Goel et. al [GHAHJ22] included in this thesis
uses techniques inspired by the PFE construction of Mohassel and Sadeghian [MS13].

Communication Efficient Branching MPC. In the context of Garbled circuits, Heath
and Kolesnikov [HK20b] introduced the idea “stacked garbling”. Which derives from
the observation that the garbled circuit, from the evaluators perspective, is just a
(pseudo) random string, assuming the circuit is encoded by simply concatenating
the garbled tables (“topology-decoupling circuit garbling” [Kol18]), thus its distri-
bution reveals nothing about the circuit. Their technique results in a computational
overhead of O(ℓ2): as every active clause results in ℓ− 1 garbled garbage outputs,
which the prover must compute to encode the gadget. Subsequently this substantial
computational overhead was reduced to O(ℓ logℓ) [HK21] by the same authors using
memorization techniques. Work by Heath et. al (MOTIF) [HKP20] improves the num-
ber of public key operations in GMW [GMW87] when computing multiple branches
in parallel. The asymptotic communication complexity of MOTIF is O(n2 · |C| · ℓ),
where |C| is the size of the circuit, ℓ is the number of clauses and n is the number of
parties. Hence the saving over the naive approach is only concrete. At Eurocrypt 2022,
Goel et. al [GHAHJ22] constructed a concretely efficient generic protocol which
has O(f (n) · (|C|+ ℓ)) communication complexity, where f (n) is the communication
complexity of executing a multiplication gate, in particular, for the case of GMW,
f (n) = O(n2) and for CDN [CDN01] f (n) = O(n). The techniques are derived from a
private function evaluation protocol, in which the function holder has been distributed.
This paper is included in the thesis.

MPC for RAM / Oblivious Data Structures An obvious way to attain “branching”
in MPC is by constructing MPC for a branching model of computation, e.g. Turing
machines or RAM programs, rather than circuits. Towards this end, oblivious data
structures are a natural building block, namely oblivious stacks in the case of Turing

1.5. DISJUNCTIONS & BRANCHING COMPUTATION 21

machines and oblivious RAM in the case of RAM programs. Oblivious RAM [GO96a]
(ORAM), introduced by Goldreich and Ostrovsky in 1996, initially with the motivation
of hiding the access pattern of a RAM program running inside an enclave. Concretely
efficient instantiations [SvS+13] of the primitive has been deployed by industry in this
role [Con22]. More broadly ORAM is a two party protocol between a ‘client’ (the
enclave in the example above) and a ‘server’ (the untrusted memory), in which the
server maintains a large encrypted RAM while the client, with only polylogarithmic
storage, can access the RAM obliviously: without revealing the access pattern of the
RAM. In order to leverage ORAM in the context of MPC, the client must be run
inside the MPC, motivated by this, there are two natural avenues:

1. Design an ORAM with a client that can be efficiently computed inside MPC [WCS15].

2. Construct distributed variants of ORAM directly: Distributed Oblivious RAM.

At Eurocrypt 2013, Lu and Ostrovsky [LO13] introduced Garbled RAM (GRAM),
which evaluates a ORAM client inside a garbled circuit, however this requires non-
blackbox use of a PRF – evaluated inside a garbled circuit, which makes the construc-
tion impractical. Lately EpiGram [HKO22] and NanoGram [PLS23] removed the
need to do cryptography inside the garbled circuit and obtained the first concretely
efficient garbled RAM. Note that due to ORAM lower bounds [Gol87, GO96b, LN18]
any approach based on ORAM necessarily incurs O(N log(N)) complexity. In a
Distributed ORAM (DORAM), two or more parties share the state of the RAM and
neither party learns the access pattern or contents – which is secret shared among the
parties. Notable recent works includes a sequence of works optimizing 3PC DORAMs,
e.g. Ramen [BPRS23], GigaDORAM [FOSZ23].

MPC for Branching Programs. Some works have also considered MPC for the
(much) more restricted model of (deterministic) branching programs. This line of
work includes the theoretical work of Ishai and Paskin [IP07] which demonstrates
how to homomorphically evaluate branching programs on encrypted inputs. The
most notable the work in this area is that of Boyle, Gilboa and Ishai [BGI16] which
constructed Function Secret Sharing (FSS) for branching programs from DDH. All
these techniques have very large concrete overheads.

Chapter 2

Private Branching Computation

In this section we provide a brief overview of the works included in the thesis and the
most central techniques employed.

2.1 Disjunction Compilers: Stacking Sigma Protocols

The first paper included in the thesis is Stacking Sigmas: A Framework to Compose
Σ-Protocols for Disjunctions [GGHAK22].

Preqrequisites. The paper arose from the observation that in many Σ-protocols the
distribution of the final message z is independent of the statement x. Furthermore,
given a third round message z and a challenge c, the simulator often works by deter-
ministically computing the unique accepting first round message a from (z, c, x). In
fact this optimization is readily used throughout the Σ-protocol literature, e.g. in lattice
based signatures [LDK+22] where sending the challenge c and last round message z,
then running the simulator and checking against c, is much smaller than sending (a,z)
and computing c = H(x,a).

Key Observation. If a Σ-protocol has these properties, then it is possible to produce
simulated transcripts (a1,c,z), . . . ,(aℓ,c,z) sharing the same challenge c and final
message z, but for distinct statements x1, . . . ,xn. This is the key observation of the
paper. The stacking compiler, like that of Cramer et al. [CDS94], works by allowing
the prover to simulate ℓ− 1 of the transcripts, however a key difference is that the
z used to simulate unsatisfied clauses is the one produced by the honest prover on
the satisfied clause, furthermore, the challenge c is the same for all transcripts. This
creates a chicken-and-egg problem: the prover must send a1, . . . ,aℓ to the verifier in
the first round before learning c (for soundness), however, he cannot simulate the
first-round message a for any unsatisfied clause without first knowing the challenge c.

Partially-Binding Vector Commitments. This issue is solved using partially-
binding vector commitments: a hiding commitment to vectors (a1, . . . ,aℓ) which
is equivocal in all but one coordinate. With this type of commitment the prover can
now commit to the first-round messages aα for the satisfied clause xα by sending

23

24 CHAPTER 2. PRIVATE BRANCHING COMPUTATION

a = Com(⊥, . . . ,aα , . . . ,⊥;r) to the verifier which responds with a challenge c. After
obtaining the challenge c the prover computes the third round message z for the
satisfied clause xα and simulates the remaining ℓ−1 transcripts obtaining the full list
of first-round messages a1, . . . ,aℓ. Finally the prover equivocates the commitment a
to the (a1, . . . ,aℓ) obtaining commitment randomness r′. The prover sends (z,r′) to
the verifier. The verifier simulates all ℓ transcripts, then recomputes the commitment
a = Com(a1, . . . ,aℓ;r′) and checks that it matches the commitment received from
the prover. The resulting protocol is an argument, since the 1-of-ℓ binding of the
commitment is computational.

2.2 Set Memberships: Curve Trees

The second work in this thesis Curve Trees: Practical and Transparent Zero-Knowledge
Accumulators. Proposed concrete improvements to proving accumulator membership
inside commit-and-prove zero-knowledge.

The Curve-Tree Accumulator. The paper exploits cycles of elliptic curves: pairs
of (prime order) elliptic curves E(evn)[Fq] and E(odd)[Fp] such that |E(evn)[Fq]| = p
and |E(odd)[Fq]| = q, i.e the number of points on one curve is the modulo defining
the field on which the points of the other resides. This structure is used to build an
“algebraic” Merkle tree [Mer88] using Pedersen commitments alternating over the
curves as compression functions:

• The hash of v∈ Fd
p for even levels of the tree is h = ⟨v,G(evn)⟩ ∈E(evn)[Fq]⊆ F2

q.

• The hash of v∈ Fd
q for odd levels of the tree is h = ⟨v,G(odd)⟩ ∈E(odd)[Fp]⊆ F2

p.

Note that this avoids any “bit-decompositions” or “non-algebraic” operations, since
the range of one hash function F2

q is the included in the domain of the other Fd
q and

vice-versa. Additionally, the commitments/hashes in the tree can easily be made
perfectly hiding by adding a random blinding factor to each level.

Traversing The Tree with Commit-and-Prove. This structure allows proving mem-
bership in the accumulator efficiently using two commit-and-prove SNARKs for
Pedersen commitments: a SNARK over Fp capable of opening Pedersen commit-
ments in E(evn)[Fq] used to handle even levels of the tree and another SNARK over Fq

capable of opening Pedersen commitments in E(odd)[Fp] used to handle odd levels of
the tree. With these, we can prove membership in the accumulator by traversing the
tree from root towards the desired leaf:

The prover opens the root C ∈ E(evn)[Fq] of the tree using the CP-SNARK over
Fp inside the SNARK, the preimage of this commitment is a set of points/Pedersen
commitments on E(odd)[Fp]: one for each child of the root. The prover selects the
desired child (leading to the leaf) and exposes this as public input to the SNARK.

The approach outlined above is however not zero-knowledge, since the prover
reveals the child commitment, thus leaking the path to the leaf. In order to remedy this,

2.3. OBLIVIOUS BRANCHING COMPUTATION: BRANCHING MPC 25

the prover rerandomizes the child commitment inside the SNARK before exposing
it as public input to the SNARK: this requires proving a scalar multiplication over
E(odd)[Fp] inside the Fp-SNARK.

Efficiency. Compared to Merkle trees with SNARK-friendly hashes, e.g. Poseidon,
the number of constraints in Curve Tress is only marginally (≈ 14%) smaller and the
primary advantage is more conservative cryptanalysis: Curve trees relies on discrete
log on elliptic curves and does not need to introduce a hardness assumption on a con-
crete hash function instantiated over the particular field that the SNARK operates over.
For benchmarking, we instantiate the commit-and-prove using Bulletproofs, however,
the scheme can be instantiated using any CP-SNARK for Pedersen commitments e.g.
a commit-and-prove variant of PlonK [GWC19] / Marlin [CHM+20] using a folding
argument, or, by using a pairing friendly cycle.

2.3 Oblivious Branching Computation: Branching MPC

The final work in this thesis is Secure Multiparty Computation with Free Branch-
ing [GHAHJ22], which proposes a new approach to oblivious branching computation
in MPC protocols, allowing conditional execution of 1-of-ℓ sub-circuits inside MPC
without revealing the branch taken. More specifically, the protocol allows the parties
to oblivious branch over a value and execute one of ℓ functions on the same (secret)
input, this type of “switch statement” is illustrated in Figure 2.1 using pseduocode.

Figure 2.1: The type of conditional statements supported by Goel et al. [GHAHJ22].

Hidign Gate Types. Assume each clause (function) is implemented as an arithmetic
circuit (addition and multiplication gates) with fan-in 2 and arbitrary fan-out. The first
observation is that hiding the gate type is easy, at the cost of possibly losing “free”
addition: simply use universal gates, e.g. a gate of the form:

res=
(
yleft+ yright

)
+ type ·

(
yleft · yright− (yleft+ yright)

)

26 CHAPTER 2. PRIVATE BRANCHING COMPUTATION

When type= 0, the gate is an addition gate (res= yleft+yright), and when type= 1
the gate is a multiplication gate (res= yleft · yright). The expression can be evaluated
using two multiplications and three additions. Assuming the parties hold a unary rep-
resentation of active clause, i.e. a “one-hot” encoding of the active clause: (b1, . . . ,bℓ)
such that bi = 1 if and only if the i-th clause is active and otherwise bi = 0, then the
parties can compute the (hidden) type of each gate in the active clause using linear
operations:

type=
ℓ

∑
i=1

bi · typei

Where typei is the type of the gate in the i-th clause: a public constant.

Hiding Circuit Topology. The far more challenging problem is to hide the wiring/-
topology of the active clause. The paper proposes different approaches, but for this
overview we focus on the multi-round (optionally maliciously secure) protocol which
draws inspiration from private function evaluation (PFE) protocol of Mohassel and
Sadeghian [MS13]: in their protocol, each wire is assigned two random masks, input
masks: in1, . . . , inW and output masks: out1, . . . ,outW . In the PFE protocol, with the
help of the function holder, who knows the function topology π : [W]→ [W], map-
ping from input wire indexes to (previously defined) output wire indexes1 the parties
compute differences ∆w = inw− outπ(w) inside MPC and reveal ∆w to the function
holder. The circuit is then evaluated gate-by-gate:

• Output Masking. After evaluating a gate, the parties use the output mask
of the output wire to mask the output value: computing uw = res+outw and
reconstructs uw to everyone.

• Input Unmasking. Before evaluating a gate, the output masking of the input
wires must be removed: the function holding party computes A = uπ(a)+∆a

and B = uπ(b)+∆b, where uπ(a) and uπ(b) are the masked outputs. The function
holding party sends A and B to all parties, which can then compute secret
sharings of the unmasked inputs locally.

This challenge solved by the protocol of Goel et al. [GHAHJ22] is essentially ex-
ecuting the function holder of the PFE protocol inside MPC without the having
communication grow with the set of clauses and without introducing an impractical
amount of overhead. The central challenge is that of oblivious computing the “shuffled
differences”, this is solved by computing:

∆w = inw−
ℓ

∑
i=1

bi ·outπi(w)

Inside MPC. However, doing so naively would require ℓ multiplications per wire:
meaning the communication would grow linearly with ℓ, defeating the purpose of the

1An “this input comes from this output” mapping: wire w, should be assigned the value from the
wire π(w).

2.3. OBLIVIOUS BRANCHING COMPUTATION: BRANCHING MPC 27

protocol. To avoid this, observe that if we look at the “vector” ∆ of all the ∆w’s, we
can write:

∆ = in−
ℓ

∑
i=1

bi ·V(i)

With ∀w.V(i)
w = outπi(w) which the parties can compute locally by simply permuting

their shares of out according to the public permutation πi – in the PFE protocol the
permutation is secret, but here it is public as the set of possible clauses is known.
With this formulation the multiplications take the form of a vector-scalar product, to
optimize the computation, the parties compute a linearly homomorphic encryption
each bi. With this they can compute an secret sharing of the encryption [∆] of ∆ using
linear operations on their shares:

[∆] = in−
ℓ

∑
i=1

[bi] ·V(i)

The ciphertext [∆] is then converted back into a secret sharing to execute the online
phase of the protocol. This trick can be seen as a “vectorized version” of the central
technique used by Cramer, Damgård, and Nielsen [CDN01]. During benchmarking
the homomorphic encryption is instantiated using a variant of BFV [FV12, Bra12]
though significantly simplified by the fact that the parties only need to compute a
single linear operation. For the field F216+1, the homomorphic operations account for
a negligible fraction of the total runtime compared to the gate-by-gate online phase of
the protocol.

Chapter 3

Works Not Included in the Thesis

In addition to the three papers included in the thesis, the candidate has also contributed
to the following published manuscripts during his PhD studies at Aarhus University:

On Valiant’s Conjecture: Impossibility of Incrementally Verifiable Computation
from Random Oracles

Authors:
Mathias Hall-Andersen (Aarhus University),
Jesper Buus Nielsen (Aarhus University)

Published:
Eurocrypt 2023.

Description:
Valiant’s construction of incrementally verifiable computation (IVC) relies
on non-blackbox use of the random oracle. In his paper Valiant con-
jectured that “standard applications of random oracles do not appear
to help”. This paper gives strong evidence for this conjecture, in par-
ticular, proving the conjecture when the IVC scheme is zero-knowledge
(simulatable in the random oracle model).

Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions.

Authors:
Aarushi Goel (NTT Research),
Nicholas Spooner (University of Warwick),
Mathias Hall-Andersen (Aarhus University),
Gabriel Kaptchuk (Boston University)

Published:
Eurocrypt 2023.

Description:
The paper builds upon the “stacking sigmas” framework, by observing
that for succinct proofs the simulator can be exponentially faster than the

29

30 CHAPTER 3. WORKS NOT INCLUDED IN THE THESIS

honest prover. This is exploited to prove disjunctions over clauses, where
the provers running time is that of the largest clause (rather than the sum
of all clauses).

Veksel: Simple, Efficient, Anonymous Payments with Large Anonymity Sets
from Well-Studied Assumptions.

Authors:
Matteo Campanelli (Protocol Labs),
Mathias Hall-Andersen (Aarhus University)

Published:
AsiaCCS 2023.

Description:

Efficient Set Membership Proofs using MPC-in-the-Head.

Authors:
Aarushi Goel (NTT Research),
Matthew Green (Johns Hopkins University),
Mathias Hall-Andersen (Aarhus University)
Gabriel Kaptchuk (Boston University)

Published:
PoPETs/PETS 2023.

Description:
The paper constructs a simple set membership proof from MPC-in-the-
head style zero-knowledge proofs and vector commitments using cut-and-
choose. The membership is plausibly post-quantum: relying only on the
(classical) random oracle model and the security of the MPCitH protocol
(which can be constructed from pseudo random functions).

Efficient Proofs of Software Exploitability for Real-World Processors.

Authors:
Matthew Green (Johns Hopkins University),
Mathias Hall-Andersen (Aarhus University),
Eric Hennenfent (Trail of Bits),
Gabriel Kaptchuk (Boston University),
Benjamin Perez (Trail of Bits),
Gijs Van Laer (Johns Hopkins University).

Published:
PoPETs/PETS 2023.

31

Description:
Describes techniques and software for proving the existence of software
vulnerabilities on the MSP430 micro controller using MPC-in-the-head.
Developed as part of the DARPA SIEVE program.

Count Me In! Extendability for Threshold Ring Signatures.

Authors:
Diego F. Aranha (Aarhus University),
Mathias Hall-Andersen (Aarhus University),
Anca Nitulescu (Protocol Labs),
Elena Pagnin (Chalmers University),
Sophia Yakoubov (Aarhus University)

Published:
PKC 2022.

Description:
The paper proposed extendability for threshold ring signatures: given a
threshold ring signature a new signing party can non-interactively extend
the ring and/or increase the threshold if his public key is in the ring. A
motivating application is “count me in” where a party wants to later
anonymously endorse a statement already signed by a set of parties.

Game Theory on the Blockchain: A Model for Games with Smart Contracts.

Authors:
Mathias Hall-Andersen (Aarhus University),
Nikolaj Schwartzbach (Aarhus University)

Published:
International Symposium on Algorithmic Game Theory (SAGT 2021).

Description:
Inspired by the game theory which arises from settings wherein actors/-
players can deploy arbitrary programs which may inspect each other, the
paper formalizes a generalization of reverse Stackleberg games (capturing
both Stackleberg and reverse Stackleberg games as special cases). The
paper proves a number of positive result (efficient algorithms for comput-
ing equilibria) and negative results (hardness results) for other classes of
games.

Part II

Included Publications

33

Chapter 4

Stacking Sigmas: A Framework to
Compose Σ-Protocols for
Disjunctions

Aarushi Goel, Gabriel Kaptchuk, Mathias Hall-Andersen, Matthew Green.

Orignally published at Eurocrypt 2022.

4.1 Introduction

Zero-knowledge proofs and arguments [GMR85] are cryptographic protocols that
enable a prover to convince the verifier of the validity of an NP statement without
revealing the corresponding witness. These protocols, along with proof of knowledge
variants, have now become critical in the construction of larger cryptographic protocols
and systems. Since classical results established feasibility of such proofs for all
NP languages [GMW86], significant effort has gone into making zero-knowledge
proofs more practically efficient e.g. [JKO13, BCTV14b, Gro16, KKW18, BBB+18,
BCR+19, HK20b], resulting in concretely efficient zero-knowledge protocols that are
now being used in practice [BCG+14, Zav20, se19].

Zero-knowledge for Disjunctive Statements. There is a long history of developing
zero-knowledge techniques for disjunctive statements [CDS94, AOS02, GMY03].
Disjunctive statements comprise of several clauses that are composed together with
a logical “OR.” These statements also include conditional clauses, i.e. clauses that
would only be relevant if some condition on the statement is met. The witness for
such statements consists of a witness for one of the clauses (also called the active
clause), along with the index identifying the active clause. Disjunctive statements
occur commonly in practice, making them an important target for proof optimizations.
For example, disjunctive proofs are often also used to give the prover some degree
of privacy, as a verifier cannot determine which clause is being satisfied. Use cases

35

36
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

include membership proofs (e.g. ring signatures [RST01]), proving the existence of
bugs in a large codebase (as explored in [HK20b]), and proving the correct execution
of a processor, which is typically composed of many possible instructions, only one
of which is executed at a time [BCG+13].

An exciting line of recent work has emerged that reduces the communication
complexity for proving disjunctive statements to the size of the largest clause in the
disjunction [Kol18, HK20b]. While succinct proof techniques exist [Gro10, GGPR13,
BCTV14b, Gro16], known constructions are plagued by very slow proving times
and often require strong assumptions, sometimes including trusted setup. These
recent works accept larger proofs in order to get significantly faster proving times
and more reasonable assumptions — while still reducing the size of proofs signif-
icantly. Intuitively, the authors leverage the observation that a prover only needs
to honestly execute the parts of a disjunctive statement that pertain to their witness.
Using this observation, these protocols modify existing proof techniques, embedding
communication-efficient ways to “cheat” for the inactive clauses of the disjunctive
statement. We refer to these techniques as stacking techniques, borrowing the term
from the work of Heath and Kolesnikov [HK20b].

Although these protocols achieve impressive results, designing stacking techniques
requires significant manual effort. Each existing protocol requires the development of a
novel technique that reduces the communication complexity of a specific base protocol.
For instance, Heath and Kolesnikov [HK20b] observe that garbled circuit tables can
be additively stacked (thus the name), allowing the prover in [JKO13] to un-stack
efficiently, leveraging the topolgy hiding property of garbling. Techniques like these
are tailored to optimize the communication complexity of a particular underlying
protocol, and do not appear to generalize well to large families of protocols. In
contrast, classical results [CDS94, AOS02] succeed in designing a generic compiler
that tranforms a large familily of zero-knowledge proof systems into proofs for
disjunction, but fall short of reducing the size of the resulting proof.

In this work, we take a more general approach towards reducing the communi-
cation complexity of zero-knowledge protocols for disjunctive statements. Rather
than reduce the communication complexity of a specific zero-knowledge protocol, we
investigate generic stacking techniques for an important family of zero-knowledge
protocols — three round public coin proofs of knowledge, popularly known as Σ-
protocols. Specifically, we ask the following question:

Can we design a generic compiler that stacks any Σ-protocol without modification?

We take significant steps towards answering this question in the affirmative. While we
do not demonstrate a technique for stacking all Σ-protocols, we present a compiler
that stacks many natural Σ-protocols, including many of practical importance. We
focus our attention on Σ-protocols because of their widespread use and because
they can be made non-interactive in the random oracle model using the Fiat-Shamir
transform [FS87]. However we expect that the techniques can easily be generalized to
public-coin protocols with more rounds.

4.1. INTRODUCTION 37

Benefits of a Generic Stacking Compiler. There are several significant benefits
of developing generic stacking compilers, rather than developing bespoke protocols
that support stacking. First, automatically compiling multiple Σ-protocols into ones
supporting stacking removes the significant manual effort required to modify existing
techniques. Moreover, newly developed Σ-protocols can be used to produce stacked
proofs immediately, significantly streamlining the deployment process. A second, but
perhaps even more practically consequential, benefit of generic compilers is that pro-
tocol designers are empowered to tailor their choice of Σ-protocol to their application
— without considering if there are known stacking techniques for that particular Σ-
protocol. Specifically, the protocol designer can select a proof technique that fits with
the natural representation of the relevant statement (e.g. Boolean circuit, arithmetic
circuit, linear forms or any other algebraic structure). Without a generic stacking
compiler, a protocol designer interested in reducing the communication complexity of
disjunctive proofs might be forced to apply some expensive NP reduction to encode
the statement in a stacking-friendly way. This is particularly relevant because modern
Σ-protocols often require that relations are phrased in a very specific manner, e.g.
Ligero [AHIV17] requires arithmetic circuits over a large, finite field, while known
stacking techniques [HK20b] focus on Boolean circuits.

A common concern with applying protocol compilers is that they trade gener-
ality for efficiency (e.g. NP reductions). However, we note that the compiler that
we develop in this work is extremely concretely efficient, overcoming this com-
mon limitation. For instance, naïvely applying our protocol to the classical Schnorr
identification protocol and applying the Fiat-Shamir [FS87] heurestic yields a ring
signature construction with signatures of length 2λ · (2+2log(ℓ)) bits, where λ is
the security parameter and ℓ is the ring size; this is actually smaller than modern ring
signatures from similar assumptions [BCC+15, ACF20] without requiring significant
optimization. 1

Our Contributions.

In this work, we give a generic treatment for minimizing the communication com-
plexity of Σ-protocols for disjunctive statements. In particular, we identify some
“special properties” of Σ-protocol that make them amenable to “stacking.” We refer
to protocols that satisfy these properties as stackable protocols. Then we present a
framework for compiling any stackable Σ-protocols for independent statements into a
new, communication-efficient Σ-protocol for the disjunction of those statements. Our
framework only requires oracle access to the prover, verifier and simulator algorithms
of the underlying Σ-protocols. We present our results in two-steps:

Self-Stacking Compiler. First, we present our basic compiler, which we call a “self-
stacking” compiler. This compiler composes several instances of the same Σ-protocol,
corresponding to a particular language into a disjunctive proof. The resulting protocol

1Although concrete efficiency is a central element of our work, applying our compiler to applications
is not our focus. The details of this ring signature construction can be found in Section 4.10.

38
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

has communication complexity proportional to the communication complexity of
a single instance of the underlying protocol. Specifically, we prove the following
theorem:

Informal Theorem 1 (Self-Stacking) Let Π be a stackable Σ-protocol for an NP lan-
guage L that has communication complexity CC(Π). There exists is a Σ-protocol for
the language (x1 ∈L)∨ . . .∨ (xℓ ∈L), with communication complexity O(CC(Π)+
λ log(ℓ)), where λ is the computational security parameter.

Cross-stacking. We then extend the self-stacking compiler to support stacking
different Σ-protocols for different languages. The communication complexity of the
resulting protocol is a function of the largest clause in the disjunction and the similarity
between the Σ-protocols being stacked. Let fCC be a function that determines this
dependence. For instance, if we compose the same Σ-protocol but corresponding to
different languages, then the output of fCC will likely be the same as that of a single
instance of that protocol for the language with the largest relation function. However,
if we compose Σ-protocols that are very different from each other, then the output of
fCC will likely be larger. We prove the following theorem:

Informal Theorem 2 (Cross-Stacking) For each i ∈ [ℓ], let Πi be a stackable Σ-
protocol for an NP language Li There exists is a Σ-protocol for the language (x1 ∈
L1)∨ . . .∨ (xℓ ∈Lℓ), with communication complexity O(fCC({Πi}i∈[ℓ])+λ log(ℓ)).

Examples of Stackable Σ-protocols. We show many concrete examples of Σ-
protocols that are stackable. Specifically, we look at classical protocols like Schnorr [Sch90],
Guillio-Quisquater [GQ90] and Blum [Blu87], and modern MPC-in-the-head pro-
tocols like KKW [KKW18] and Ligero [AHIV17]. Previously it was not known
how to prove disjunction over these Σ-protocols with sublinear communication in
the number of clauses. When applied to these Σ-protocols, our compiler yields a
Σ-protocol which can can made non-interactive in the random oracle model using
the Fiat-Shamir heurestic. For example, when instantiated with Ligero our compiler
yields a concretely efficient Σ-protocol for disjunction over ℓ different circuits of size
|C| each, with communication O(

√
|C|+λ logℓ). Additionally, we explore how to

apply our cross-stacking compiler to stack different stackable Σ-protocols with one
another (e.g. stacking a KKW proof for one relation with a Ligero proof for another
relation).

Partially-binding non-interactive vector commitments. Central to our compiler
is a new variation of commitments called partially-binding non-interactive vector
commitment schemes. These schemes allow a committer to commit to a vector of
values and equivocate on a subset of the elements in that vector, the positions of
which are determined during commitment and are kept hidden. We show how such
commitments can be constructed from the discrete log assumption.

4.2. RELATED WORK 39

Extensions and Implementation Considerations. We finish by discussing extensions
of our work and concrete optimizations that improve the efficiency of our compiler
when implemented in practice. Specifically, we consider generalizing our work to
k-out-of-ℓ proofs of partial knowledge, i.e. the threshold analog of disjunctions. We
give a version of our compiler that works for these threshold statements. Additionally,
we demonstrate the efficiency of our compiler by presenting concrete proof sizes when
our compiler is applied to both a disjunction of KKW and Schnorr signatures.

Future Work. In this work we focus on Σ-protocols for ease of explication and
to capture a wide class of interesting protocols, however it should be possible to
extend our techniques to zero-knowledge proofs with more rounds using suitable
generalizations.

4.2 Related Work

Proofs of partial knowledge. The classic work of Cramer et. al. [CDS94] shows
how to compile a secret-sharing scheme and Σ-protocols for the (possibly distinct)
relations R1, . . . ,Rℓ into a new Σ-protocols (without additional assumptions) for the
t-threshold “partial knowledge” relation Rt,(R1,...,Rℓ)(x,w) := |{Ri(xi,wi) = 1}| ≥ t.
The communication of the resulting Σ-protocol is |π|= O(ℓ). Abe et. al. [AOS02]
suggested an alternative approach to creating 1-of-n proofs in the non-interactive
context of ring signatures. Specifically, the prover (starting with the active clause)
hashes the first round message of the ith clause to generate the challenge for the (i+1)th

clause; for each inactive clause, the prover uses a simulator to complete the transcript
with respect to the generated challenge. The resulting signature contains a third
round message for each clause, making it linear in ℓ. Because their approach requires
generating the third round message of the active clause after simulating the inactive
clauses, it is not clear how to generalize their techniques to re-use messages. Groth
and Kohlweiss [GK15] constructed a zero-knowledge proof of partial knowledge for
the “discrete log” relation i.e. R1 = . . .= Rℓ = Rdlog := x ?

= gw with threshold t = 1
and communication |π|= O(logℓ). Later work by Attema, Cramer and Fehr [ACF20]
obtains proofs of partial knowledge for Rdlog with any threshold t and |π|= O(logℓ)
communication, by applying compressed Σ-protocol theory [AC20]. Work by Jivanyan
and Manikonyan [JM20] reduces the computational overhead of similar proofs from
O(ℓ logℓ) to O(ℓ) at the cost of communication. Unlike these earlier/concurrent
‘O(logn) works’, we considers a much broader class of Σ-protocols and deploy
fundamentally different techniques.

Online/offline OR composition of Σ-protocols. Ciampi et al. [CPS+16] extended
the ‘proof of partial knowledge’ work by Cramer et al. to enable specifying in-
stances in the disjunction in the third round. This is attained by constructing a
(k,n)-equivocal commitment scheme from Σ-protocols and the original Cramer. et.
al compiler [CDS94]. Careful analysis shows that despite the prover being able to
adaptively choose instances the transformation is sound. The goal of Ciampi et al.

40
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

is very different and does not consider communication saving, but our work makes
use of similar (k,n)-equivocal commitments (called ‘partially-binding commitments’
here) to obtain communication savings rather than delayed instance specification.

Stacked Garbling. Work by Heath and Kolesnikov [HK20b], extends the works
of Jawurek et. al. [JKO13] and Frederiksen et. al. [FNO15] to obtain efficient
interactive zero-knowledge proofs over disjunctive statements (Boolean circuits) This
is done by having the garbler garble each clause separately then “stacking” the garbled
circuits by XORing them together. The stacked result is sent to the verifier, who
obliviously retrieves the garbling randomness for all but one of the garbled circuits
and reconstructs the remaining garbling circuit. Subsequent work [HK20a] by the
same authors, extended similar stacking techniques to enable 2PC with communication
saving for circuits with disjunctions, without the need for a separate output selection
protocol as in [Kol18].

Mac’n’Cheese. Concurrent work by Baum et. al [BMRS20] introduces an abstraction
dubbed LOVe (‘Interactive Protocols with Linear Oracle Verification’) and obtains
‘free nested disjunctions’ for this class of interactive zero-knowledge proofs. They
give a concretely efficient constant-round instantiation of a LOVe for satisfiability of
a arithmetic circuits over sufficiently large fields in the RO model. Since soundness
relies on the prover maintaining linear MACs (message authentication codes) estab-
lished using VOLE (Vector Oblivious Linear Evaluation) under a verifier’s secret key,
it is not obvious how to make this protocol non-interactive.

4.3 Technical Overview

In this section, we give a detailed overview of the techniques that we use to design a
generic framework to achieve communication-efficient disjunctions of Σ-protocols
without requiring non-trivial2 changes to the underlying Σ-protocols. Throughout
this work, we consider a disjunction of ℓ clauses, one (or more) of which are active,
meaning that the prover holds a witness satisfying the relation encoded into those
clauses. For the majority of this technical overview, we focus on the simpler case
where the same Σ-protocol is used for each clause. We will then extend our ideas to
cover heterogeneous Σ-protocols.

Recall that Σ-protocols are three-round, public-coin zero-knowledge protocols,
where the prover sends the first message. In the second round, the verifier sends a
random “challenge” message to the prover, that only depends on the random coins of
the the verifier. Finally, in the third round, the prover responds with a message based

2We assume that basic, practice-oriented optimizations have already been applied to the Σ-protocols
in question. For instance, we assume that only the minimum amount of information is sent during the
third round of protocol. Hereafter, we will ignore these trivial modifications and simply say “without
requiring modification.” Note that these modifications truly are trivial: the parties only need to repeat
existing parts of the transcript in other rounds. We discuss this in the context of MPC-in-the-head
protocols in Section 4.6.

4.3. TECHNICAL OVERVIEW 41

on this challenge. Based on this transcript the verifier then decides whether to accept
or reject the proof.

We start by considering the approaches taken by recent works focusing on privacy-
preserving protocols for disjunctive statements, e.g. [HK20b]. We observe that the
“stacking” techniques used in all these works can be broadly classified as taking a
cheat and re-use approach. In particular, all of these works show how some existing
protocols can be modified to allow the parties to “cheat” on the inactive clauses —
i.e. only executing the active clause honestly — and “re-using” the single honestly-
computed transcript to mimic a fake computation of the inactive clauses. Critically,
this is done while ensuring that the verifier cannot distinguish the honest execution of
the active clause from the fake executions of the inactive clauses.

Our Approach. In this work we extend the cheat and re-use approach to design a
framework for compiling Σ-protocols into a communication-efficient Σ-protocol for
disjunctive statements without requiring modification of the underlying protocols.
Specifically, we are interested in reducing the number of third round messages that
a prover must send to the verifier, since the third round message is typically the
longest message in the protocol. Intuition extracted from prior work leads us to
a natural high-level template for achieving this goal: Run individual instances of
Σ-protocols (one-for each clause in the disjunction) in parallel, such that only one of
these instances (the one corresponding to the active clause) is honestly executed, and
the remaining instances re-use parts of this honest instance.

There are two primary challenges we must overcome to turn this rough outline
into a concrete protocol: (1) how can the prover cheat on the inactive clauses? and (2)
what parts of an honest Σ-protocol transcript can be safely re-used (without revealing
the active clause)? We now discuss these challenges, and the techniques we use to
overcome them, in more detail.

Challenge 1: How will the prover cheat on inactive clauses? Since the prover
does not have a witness for the inactive clauses, the prover can cheat by creating
accepting transcripts for the inactive clauses using the simulator(s) of the underlying
Σ-protocols. The traditional method (e.g. [CDS94] for disjunctive Schnorr proofs)
requires the prover to start the protocol by randomly selecting a challenge for each
inactive clause and simulating a transcript with respect to that challenge. In the third
round, the prover completes the transcript for each clause and demonstrates that it
could only have selected the challenges for all-but-one of the clauses. This approach,
however, inherently requires sending many third round messages, which will make it
difficult to re-use material across clauses (discussed in more detail below). Similarly,
alternative classical approaches for composing Σ-protocols for disjunctives, like that
of Abe et al. [AOS02], also require sending a distinct third round message for each
clause. As such, we require a new approach for cheating on the inactive clauses.

Our first idea is to defer the selection of first round messages for the inactive
clauses until after the verifier sends the challenge (i.e in the third round of the compiled
protocol), while requiring that the prover select a first round message honestly for the
active clause (i.e in the first round of the compiled protocol). To do this, we introduce

42
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

a new notion called non-interactive, partially-binding vector commitments.3 These
commitments allow the committer to commit to a vector of values and equivocate on
a hidden subset of the entries in the vector later on. For instance, a 1-out-of-ℓ binding
commitment allows the committer to commit a vector of ℓ values such that that one
of the vector positions (chosen when the commitment is computed) is binding, while
allowing the committer to modify/equivocate the remaining positions at the time of
opening. For a disjunction with ℓ clauses, we can now use this primitive to ensure that
the prover computes an honest transcript for at least one of the Σ-protocol instances as
follows:

• Round 1: The prover computes an honest first round message for the Σ-protocol
corresponding to the active clause. It commits to this message in the binding
location of a 1-out-of-ℓ binding commitment, along with ℓ−1 garbage values,
and sends the commitment to the verifier.

• Round 2: The verifier sends a challenge message for the ℓ instances.

• Round 3: The prover honestly computes a third round message for the active
clause and then simulates first and third round messages for the remaining
ℓ− 1 clauses. It equivocates the commitment with these updated first round
messages, and sends an opening of this commitment along with all the ℓ third
round messages to the verifier.

While this is sufficient for soundness, we need an additional property from these
partially-binding vector commitments to ensure zero-knowledge. In particular, in
order to prevent the verifier from learning the index of the active clause, we require
these partially-binding commitments to not leak information about the binding vector
position. We formalize these properties in terms of a more general t-out-of-ℓ binding
vector commitment scheme, which may be of independent interest, and we provide a
practical construction based on the discrete log assumption.4

Challenge 2: How will the prover re-use the active transcript? The above ap-
proach overcomes the first challenge, but doesn’t achieve our goal of reducing the
communication complexity of the compiled Σ-protocol. Next, we need to find a way
to somehow re-use the honest transcript of the active clause. Our key insight is that
for many natural Σ-protocols, it is possible to simulate with respect to a specific third
round message. That is, it is often easy to simulate an accepting transcript for a given
challenge and third round message. This allows the prover to create a transcript for the
inactive clauses that share the third round message of the active clause. In order for
this compilation approach to work, Σ-protocols must satisfy the following properties
(stated here informally):

– Simulation With Respect To A Specific Third Round Message: To re-use the active
transcript, the prover simulates with respect to the third round message of the active

3A similar notion for interactive commitments was introduced in [CPS+16].
4We also explore a construction that is half the size and leverages random oracles in Section 4.16.

4.3. TECHNICAL OVERVIEW 43

transcript. This allows the prover to send a single third round message that can be
re-used across all the clauses. More formally, we require that the Σ-protocol have a
simulator that can reverse-compute an appropriate first round message to complete
the accepting transcript for any given third round message and challenge. While
not possible for all Σ-protocols, simulating in this way—i.e., by first selecting a
third round message and then “reverse engineering” the appropriate first round
message—is actually a common simulation strategy, and therefore possible with
most natural Σ-protocols. In order to get communication complexity that only has
a logarithmic dependence on the number of clauses, we additionally require this
simulator to be deterministic.5 We formalize this property in Section 4.6.

– Recyclable Third Round Messages: To re-use third round messages in this way, the
distribution of these third round messages must be the same. Otherwise, simulating
the inactive clauses would fail and the verifier could detect the active clause used
to produce the third round message. Thus, we require that the distribution of third
round messages in the Σ-protocol be the same across all statements of interest. We
formalize this property in Section 4.6.

An mentioned before, most natural Σ-protocols satisfy both these properties and we
refer to such protocols as stackable Σ-protocols. We can compile such Σ-protocols
into a communication-efficient Σ-protocol for disjunctions, where the communication
only depends on the size of one of the clauses, as follows: Rounds 1 and 2 remain
the same as in the protocol sketch above. In the third round, the prover first computes
a third round message for the active clause. It then simulates first round messages
for the remaining clauses based on the active clause’s third round message and the
challenge messages. As before, it equivocates the commitment with these updated
first round messages.6 While this allows us to compress the third round messages,
we still need to send a vector commitment of the first round messages. In order to
get communication complexity that does not depend on the size of all first round
messages, the size of this vector commitment should be independent of the size of the
values committed. Note that this is easy to achieve using a hash function.

Summary of our Stacking Compiler. Having outlined our main techniques, we now
present a detailed description of our compiler for 2 clauses, as depicted in Figure 4.1
(similar ideas extend for more than 2 clauses). The right (unshaded) box represents
the active clause and the left (shaded) box represents the inactive clause. Each of
the following numbered steps refer to a correspondingly numbered arrow in the
figure: (1) The prover runs the first round message algorithm of the active clause to
produce a first round message a2. (2) The prover uses the 1-of-2 binding commitment
scheme to commit to the vector v = (0,a2). (3) The resulting commitment constitutes

5We elaborate on the importance of this additional property in the technical sections.
6If the simulator computes the first round messages deterministically, then the prover only needs to

reveal the randomness used in the commitment in the third round, along with the common third round
message to the verifier. Given the third round message, the verifier can compute the first round messages
on its own and check if the commitment was valid and that the transcripts verify.

44
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Compiled Prover Compiled Verifier

A(x2,w;rp)

a2

Com(v = (0,a2),r) a′

c′ $←− {0,1}κc′

Z(x2,a2,c′,w)

z

Sim(x1,c′,z)

a1

Equiv(a′,v′ = (a1,a2),r) r′ z′ = (z,a1,a2,r′) z′

Σx2 (active)Σx1 (inactive)

Σx1∨x2

1

2 3

4

5

6

7

8

9

φ ′(x1∨ x2,a′,c′,z′) =
(a′ = Com(v′ = (a1,a2),r′)) ∧
φ(x1,a1,c′,z) ∧ φ(x2,a2,c′,z)

Figure 4.1: High level overview of our compiler applied to a Σ-protocol Σ = (A,C,Z,φ)
over statements x1 and x2. Several details have been omitted or changed to illustrate the core
ideas more simply. The red circle contains a value used in the first round, while purple circles
contain values used in the third round. We include a1 and a2 in the third round message for
clarity; in the real protocol, the verifier will be able to deterministically recompute these values
on their own.

the compiled first round message a′. (4) The challenge c′ is created by the verifier.
(5) The prover generates the third round message z for the active clause using the
first round message a2, the challenge c′, and the witness w. (6) The prover then uses
the simulator for the inactive clause on the challenge c′ and the honestly generated
third round message z to generate a valid first round message for the inactive clause
a1. (7) The prover equivocates on the contents of the commitment a′ – replacing 0
with the simulated first round message a1. The result is randomness r′ that can be
used to open commitment a′ to the vector v′ = (a1,a2). (8) The compiled third round
message consists of honestly generated third round message z, the randomness r′

of the equivocated commitment, and the two first round messages a1,a2.7 (9) The
verifier then verifies the proof by ensuring that each transcript is accepting and that
the first round messages constitute a valid opening to the commitment a′.

Complexity Analysis: Communication in the first round only consists of the com-
mitment, which we show can be realized in O(ℓλ) bits, where λ is the security
parameter. In the last round, the prover sends one third round message of the un-
derlying Σ-protocol that depends on the size of one of the clauses8 and ℓ first round
messages of the underlying Σ-protocol. Thus, naïvely applying our compiler results
in a protocol with communication complexity O(CC(Σ)+ ℓ ·λ), where CC(Σ) is the

7In the compiler presented in the main body, a1 and a2 are omitted from the third round message
and the verifier recomputes them from z and c′ directly. We make this simplification in the exposition to
avoid introducing more notation.

8We can assume w.l.o.g. that all clauses have the same size. This can be done by appropriately
padding the smaller clauses.

4.3. TECHNICAL OVERVIEW 45

communication complexity of the underlying stackable Σ-protocol, when executed
for the largest clause. In the technical sections, we show that the resulting protocol is
itself “stackable”, it can be recursively compiled. This reduces the communication
complexity to O(CC(Σ)+ log(ℓ) ·λ).

Stackable Σ-Protocols. While not all Σ-protocols are able to satisfy the first two prop-
erties that we require, we show that many natural Σ-protocols like Schnorr [Sch90],
and Guillio-Quisquater [GQ90] satisfy these properties. We also show that more recent
state-of-the-art protocols in MPC-in-the-head paradigm [IKOS07] like KKW [KKW18]
and Ligero [AHIV17] have these properties. We formalize the notion of “F -universally
simulatable MPC protocols”, which produce stackable Σ-protocols when compiled
using MPC-in-the-head [IKOS07]. This formalization is highly non-trivial and re-
quires paying careful attention to the distribution of MPC-in-the-head transcripts. Our
key observation is that transcripts generated when executing one circuit can often be
seamlessly reinterpreted as though they were generated for another circuit (usually
of similar size). We refer the reader to Section 4.6 for more details on stackable
Σ-protocols.

Stacking Different Σ-Protocols. The compiler presented above allows stacking
transcripts for a single Σ-protocol, with a single associated NP language, evaluated
over different statements e.g., (x1 ∈L)∨ . . .∨ (xℓ ∈L). This is quite limiting and
does not allow a protocol designer to select the optimal Σ-protocol for each clause
in a disjunction. As such, we explore extending our compiler to support stacking
different Σ-protocols with different associated NP languages, i.e. (x1 ∈L1)∨ (x2 ∈
L2)∨ . . .∨ (xℓ ∈Lℓ).

We start by noting that it is possible to create a “meta-language” to cover multiple
languages of interest, and thereby generalize our previous compiler in a straightfor-
ward way. For instance, one could create a language L with an associated relation
function that embeds the relation functions for L1, . . . ,Lℓ, making L some form of
circuit satisfiability language. A single Σ-protocol could then be used to cover all
these languages. Unfortunately, this approach — intuitively equivalent to creating
zero-knowledge protocols for all NP complete problems by reducing to a single prob-
lem — will often result in high concrete overheads. In rare cases, however, it may
be practically efficient; if the languages L1, . . . ,Lℓ are all circuit satisfiability for
circuits with the same multiplicative complexity, finding an efficient representation
might be easy.

This “meta-language” approach still requires the use of a single Σ-protocol. It
would be preferable to allow “cross-stacking,” or using different Σ-protocols for each
clause in the disjunction.9 The key impediment to applying our self-stacking compiler
to different Σ-protocols is that the distribution of third round messages between two
different Σ-protocols may be very different. For example, a statement with three

9While it might be possible to define a Σ-protocol that uses different techniques for different parts
of the relation, this would require the creation of a new, purpose built protocol — something we hope
to avoid in this work. Thus, the difference between self-stacking in this work is primarily conceptual,
rather than technical.

46
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

clauses may be composed of one Σ-protocol defined over a large, finite field, another
operating over a boolean circuit, and a third that is constructed from elements of a
discrete logarithm group. Thus, attempting to use the simulator for one Σ-protocol
with respect to the third round message of another might result in a domain error;
there may be no set of accepting transcripts for the Σ-protocols that share a third round
message. As re-using third round messages is the way we reduce communication
complexity, this dissimilarity might appear to be insurmountable.

To accommodate these differences, we observe that the extent to which a set of
Σ-protocols can be stacked is a function of the similarity of their third round messages.
In the self-stacking compiler, these distributions were exactly the same, resulting
in a “perfect stacking.” With different Σ-protocols, the prover may only be able to
re-use a part of the third round message when simulating for another Σ-protocol,
leading to a “partial stacking.” We note, however, that the distributions of common
Σ-protocols tend to be quite similar — particularly when seen as an unstructured
string of bits. For instance, transcript containing points on Curve25519 encoded using
Elligator [BHKL13], elements of Z216 , and field elements in F264 will all appear to
be random bitstrings when viewed without structure, and will be indistinguishable
(assuming correct padding). These random bitstrings can then be partitioned and
interpreted, as needed, by each simulator.

More formally, stacking different Σ-protocols requires an efficient, invertible
mapping from each third round message space into some shared distribution D (e.g.
random bitstrings in the example above). Intuitively, D represents the union of the
sub-distributions of third round message for each Σ-protocol — enough of each kind
of element that the simulators for each Σ-protocol can assemble a well-formed third
round message from any element of D . Any third round message for one of the
Σ-protocols can be mapped into D by appending randomly sampled elements from the
right sub-distributions to the message; inverting the mapping involves deterministically
selecting the appropriate bits and dropping the rest.

Our cross-stacking compiler works as follows: the prover begins as in the self-
stacking compiler, executing the first round message function of the active clause
and computing a commitment using a partially-binding commitment scheme. After
receiving the challenge, the prover honestly computes a third round message for the
active clause. Next, the prover maps this message to some element d in the shared
distribution D . Finally, the prover extracts a third round message for each inactive
clause from d, and simulates a transcript from this extracted message. The third
round message then contains first round messages for each transcript, equivocating
randomness, and d. The verifier uses the invertible mapping to extract a third round
message for each clause, and verify these transcripts. The communication complexity
of the compiler protocol is determined by the size of d. In Section 4.8, we show that
this compiler can be efficiently applied to stack many Σ-protocols with each other,
including MPC-in-the-head protocols like KKW [KKW18] and Ligero [AHIV17].

In Section 4.9, we briefly explore extended the ideas above to produce zero-
knowledge proofs for proofs of partial knowledge, i.e. statements where the prover
wishes to prove that it has witnesses to at least k out of the ℓ clauses. We note that

4.4. PRELIMINARIES 47

solving this problem requires additional structure not present in the purely disjunctive
setting. The communication complexity introduced by the compiler we present has an
additive overhead that is linear in ℓ, making it less efficient than the other compilers
we present in this work. We belive improving on this result is interesting future work.

Paper Organization. The paper is organized as follows: we present required pre-
liminaries Section 4.4 and the interface for partially-binding commitment schemes in
Section 4.5. In Section 4.6 we cover the properties of Σ-protocols that our compiler
requires and give examples of conforming Σ-protocols. We present our self-stacking
compiler in Section 4.7and our cross-stacking compiler in Section 4.8.Finally, in
Section 4.9, we give an overview of extending our work to proofs of partial knowledge
and in Section 4.10 we discuss the concrete efficiency of instantiating our compilers.

4.4 Preliminaries

Notation

Throughout this paper we use λ to denote the computational security parameter and

κ to denote the statistical security parameter. We denote by x $←−D the sampling of
‘x’ from the distribution ‘D’. We use [n] as a short hand for a list containing the first

n natrual numbers in order: i.e. [n] = 1,2 . . . ,n. We denote by x $←−s D the process
of sampling ‘x’ from the distribution ‘D’ using pseudorandom coins derived from
a PRG applied to the seed ‘s’, when the expression occurs multiple times we mean
that the element is sampled using random coins from disjoint parts of the PRG output.
We denote by H a collision-resistant hash function (CRH). We write group operations
using multiplicative notation.

Σ-Protocols

In this section, we recall the definition of a Σ-protocol.

Definition 1 (Σ-Protocol) Let R be an NP relation. A Σ-Protocol Π for R is a 3
move protocol between a prover P and a verifier V consisting of a tuple of PPT
algorithms Π = (A,Z,φ) with the following interfaces:

– a← A(x,w;rp): On input the statement x, corresponding witness w, such that
R(x,w) = 1, and prover randomness rp, output the first message a that P sends
to V in the first round.

– c $←− {0,1}κ : Sample a random challenge c that V sends to P in the second
round.

– z← Z(x,w,c;rp): On input the statement x, the witness w, the challenge c, and
prover randomness rp, output the message z that P sends to V in the third round.

48
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

– b← φ(x,a,c,z): On input the statement x, prover’s messages a,z and the
challenge c, this algorithm run by V, outputs a bit b ∈ {0,1}.

A Σ-protocol has the following properties:

– Completeness: A Σ-Protocol Π = (A,Z,φ) is said to be complete if for any x,w

such that R(x,w) = 1, and any prover randomness rp $←− {0,1}λ , it holds that,

Pr
[
φ(x,a,c,z) = 1

∣∣∣ a← A(x,w;rp);c $←− {0,1}κ ;z← Z(x,w,c;rp)
]
= 1

– Special Soundness. A Σ-Protocol Π = (A,Z,φ) is said to have special sound-
ness if there exists a PPT extractor E , such that given any two transcripts
(x,a,c,z) and (x,a,c′,z′), where c ̸= c′ and φ(x,a,c,z) = φ(x,a,c′,z′) = 1, it
holds that

Pr
[
R(x,w) = 1| w← E (1λ ,x,a,c,z,c′,z′)

]
= 1

– Special Honest Verifier Zero-Knowledge. A Σ-Protocol Π = (A,Z,φ) is said
to be special honest verifier zero-knowledge, if there exists a PPT simulator S ,
such that for any x,w such that R(x,w) = 1, it holds that

{(a,z) | c $←− {0,1}κ ;(a,z)←S (1λ ,x,c)} ≈c

{(a,z) | rp $←− {0,1}λ ;a← A(x,w;rp);c $←− {0,1}κ ;z← Z(x,w,c;rp)}

Secure Multiparty Computation

For completeness, we recall the definitions of t-privacy and t-robustness from [IKOS07]
that will be used in MPC-in-the-head protocols.

Definition 2 (t-Privacy [IKOS07]) Let 1 ≤ t < n. We say that Π realizes f with
computational t-privacy if there is a PPT simulator S such that for any inputs
x,w1, . . . ,wn and every set of corrupt players I ⊆ [n] such that |I | ≤ t, the joint view
ViewI (x,w1, . . . ,wn) of the players in I and S (I ,x,{wi}i∈I , f (x,w1, . . . ,wn)) are
(identically distributed, statistically close, computationally close).

Definition 3 (Statistical t-Robustness [IKOS07]) Let 1≤ t < n. We say that Π re-
alizes f with statistical t-robustness if (1) it correct evaluates f in the presence of a
semi-honest adversary (with an most negligible error) and (2) if for any computation-
ally unbounded malicious adversary corrupting a set I of at most t players, and for
any inputs (x,w1, . . . ,wn), if there is no (w′1, . . . ,w

′
n) such that f (x,w1, . . . ,wn) = 1,

then the probability that some uncorrupted player outputs 1 in an execution of Π in
which the inputs of the honest player are consistent with (x,w1, . . . ,wn) is negligible
in the security parameter.

4.5. PARTIALLY-BINDING VECTOR COMMITMENTS 49

4.5 Partially-Binding Vector Commitments

In this section, we introduce non-interactive partially-binding vector commitments.10

These commitments allow a committer to commit to a vector of ℓ elements such
that exactly t positions are binding (i.e. cannot be opened to another value) and the
remaining ℓ− t positions can be equivocated. The committer must decide the binding
positions of the vector before committing and the binding positions are hidden.

Definition 4 (t-out-of-ℓ Binding Vector Commitment) A t-out-of-ℓ binding non-interactive
vector commitment scheme with message space M and randomness space R is defined
by a tuple of the PPT algorithms (Setup,Gen,EquivCom,Equiv,BindCom) defined
as follows:

• pp← Setup(1λ) On input the security parameter λ , the setup algorithm outputs
public parameters pp.

• (ck,ek)← Gen(pp,B): Takes public parameters pp and a t-subset of indices
B ∈

(
[ℓ]
t

)
. Returns a commitment key ck and equivocation key ek.

• (com,aux)←EquivCom(pp,ek,v;r): Takes public parameter pp, equivocation
key ek and an ℓ-tuple v. Returns a partially-binding commitment com as well
as some auxiliary equivocation information aux and randomness r. We may
omit r as a parameter where sampling is implicit.

• r← Equiv(pp,ek,v,v′,aux): Takes public parameters pp, equivocation key
ek, original commitment value v and updated commitment values v′ with ∀i ∈
B : vi = v′i, and auxiliary equivocation information aux. Returns equivocation
randomness r.

• com← BindCom(pp,ck,v;r): Takes public parameters pp, commitment key
ck, ℓ-tuple v and randomness r and outputs a commitment com. Note that this
algorithm does not use the equivocation key ek. This algorithm plays a similar
role to that of Open in a typical commitment scheme.

The properties satisfied by the above algorithms are as follows:

(Perfect) Hiding: The commitment key ck and commitment com (perfectly) hides
the binding positions B and the equivocated values, even when opening the
commitment. Moreover, the distribution of randomness r computed using
EquivCom should match R. Formally, for all v ∈M ℓ, B(1),B(2) ∈

(
[ℓ]
t

)
, a

‘valid equivocation’ vector v′ ∈M ℓ i.e. ∀i ∈ B(1) : vi = v′i and pp← Setup(1λ),
the following distributions are equal:

10As pointed out in [ABFV22], there was a subtle issue in our definition, in the previous version
of this paper. In their paper, Avitabile et al. [ABFV22] proposed a slight modification to our previous
definition to help resolve the issue. In this updated version, we propose a slightly different modification
than theirs to our previous definition that also helps resolve the issue observed in [ABFV22].

50
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

(ck,com,r)

∣∣∣∣∣∣∣
(ck,ek)← Gen(pp,B(1));

(com,aux)← EquivCom(pp,ek,v);
r← Equiv(pp,ek,v,v′,aux)


p=(ck,com,r)

∣∣∣∣∣∣∣∣
(ck,ek)← Gen(pp,B(2));

r $←−R;

com← BindCom(pp,ck,v′;r);


Note that this definition implies (1) that an adversary cannot distinguish between
commitment keys ck generated using different binding sets of the same size,
(2) an adversary cannot distinguish between commitments generated using
BindCom and EquivCom, and (3) the opening of the commitment still hides if
the opening vector was produced by equivocation. 11

(Computational) Partial Binding: An adversary (that generates ck itself) cannot
equivocate on more than ℓ− t positions, even across multiple different com-
mitments. Define the function ∆ : M ℓ×M ℓ 7→ P([ℓ]) taking two vectors and
returning the set of indexes on which the vectors differ:

∆(v,v′) = { j ∈ [ℓ] : v j ̸= v′j} .

Consider an adversary A that outputs ck and a set S of pairs of openings S⊆
M ℓ×M ℓ×R×R such that each pair of openings share the same commitment
under ck, then the set of index on which the openings differ across all pairs has
cardinality at most t− ℓ, formally, we require that the following probability is
negligible in λ for any PPT A :

Pr

[∣∣∣⋃(v,v′,r,r′)∈S ∆(v,v′)
∣∣∣> ℓ− t ∧

∀(v,v′,r,r′) ∈ S. BindCom(pp,ck,v;r) = BindCom(pp,ck,v′;r′)

∣∣∣∣∣ pp← Setup(1λ)

(ck,S)←A (1λ ,pp)

]
.

Partial Equivocation: Given a commitment to v under a commitment key ck←
Gen(pp,B), it is possible to equivocate to any v′ as long as ∀i ∈ B : vi = v′i.
More formally, for all B ∈

(
[ℓ]
t

)
, and all v,v′ ∈M ℓ st. ∀i ∈ B : vi = v′i then:

Pr

BindCom(pp,ck,v′;r′) = com

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ);r $←−R;

(ck,ek)← Gen(pp,B);

(com,aux)← EquivCom(pp,ek,v;r);

r′← Equiv(ek,v,v′,aux)

= 1

Throughout this work we will impose the efficiency requirement that the size of the
commitment is independent of the size of the elements. We note that this is easy
to achieve using a collision resistant hash function, when targeting computational
binding.

11Note that the definition of hiding has been updated since initial publication.

4.5. PARTIALLY-BINDING VECTOR COMMITMENTS 51

Relation To Similar Notions

The definition of partially binding vector commitments is similar to other definitions
found in the literature, let us therefore briefly describe the distionguishing features of
the definition above from these prior/concurrent definitions.

Somewhere Statistically Binding Hash Functions. A SSB (Somewhere Statistically
Binding) hash function is a collision resistant hash function over vectors, it differs
from partially binding commitments on many points: 1) a SSB hash function provide
a short opening proof for any index. 2) the digest does not hide the vector, in particular
does not provide equivocation for i ̸= i∗. 3) the notion only considers a single binding
index i∗. 4) the value at statistically binding index vi∗ can be extracted from the digest
(extraction), which is not required for partially binding commitments.

Somewhere Statistically Binding Commitments. In concurrent work Fauzi, Lipmaa
and Pindado [FLPS20] defines a very similar notion of a somewhere statistically
binding commitment scheme, which provide hiding commitment to vectors and is
binding in a subset of the indexes, however their definition/motivation differs in a
few important ways: 1) we do not require extraction, as a result partially binding
commitments do not imply oblivious transfer unlike SSB commitments, indeed we
know of constructions of partially binding commitments from non-blackbox commit-
ments in the random oracle model. 2) we also do not require statistical binding for our
compiler: there is a trade-off between statistical/computational binding of the partially
binding vector commitment and computational/statistical zero-knowledge respectively
of the compiled protocol; the instansiations we provide in this paper choose perfect
hiding. 3) for our applications, the party sampling the commitment key generator
cannot be trusted. 4) for efficiency we require |ck| to be small.

Partially-Binding Vector Commitments from Discrete Log

We now present a simple and concretely efficient construction of t-out-of-ℓ partially-
binding vector commitments from the discrete log assumption. The idea is to have
the committer use a Pedersen commitment for each element in the vector. Recall
that a Pedersen commitment to the message m ∈ Z|G| with public parameters g,h ∈
G is computed as gmhr for a random value r. The binding property of Pedersen
commitments relies on the committer not knowing the discrete log of g with respect
to h. For our partially-binding vector commitment scheme, the commitment key is
a set of public parameters for the Pedersen commitments, constructed such a way
that the committer knows discrete logs for exactly ℓ− t parameters. This is done by
having the committer pick ℓ− t of the parameters and computing the remaining t
parameters by interpolating in the exponent. More formally, let use begin by fixing
some notation. Let Z|G| be a prime field. In our construction, we implicitly treat
indexes i∈ [0, |G|−1] as field elements, i.e. there is an implicit bijective map between
[0, |G|−1] and Z|G| (e.g. i mod |G| ∈ Z/(|G|)). Let X ⊆ Z|G| and j ∈X , define
L(X , j)(X) := ∏m∈X ,m̸= j

X−m
j−m ∈ Z|G|[X] i.e. the unique degree |X |−1 polynomial

for which ∀x ∈X \{ j} : L(X , j)(x) = 0 and L(X , j)(j) = 1. The formal description

52
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

pp← Setup(1λ)

1 : G← GenGroup(1λ);g0,h
$←−G

2 : return (G,g0,h)

(com,aux)← EquivCom(pp,ek,v):

1 : r $←− Zℓ
|G|

2 : com← BindCom(pp,ck,v,r)
3 : return (com,r)

(ck,ek)← Gen(pp,B)

1 : Let E = [ℓ]\B (set of equivocal indexes)

2 : Generate trapdoors for ℓ− t indexes: for i ∈ E : yi
$←− Z|G|,gi← hyi

3 : Interpolate the first [ℓ−t] elements: for j ∈ [ℓ− t] : g j←∏i∈E∪{0} gi
L(E∪{0},i)(j)

4 : ck= (g1, . . . ,gℓ−t)

5 : ek= (g1, . . . ,gℓ−t ,{yi}i∈E ,E,B)

6 : return (ck,ek)

r← Equiv(pp,ek,v,v′,aux):

1 : Let E = [ℓ]\B (set of equivocal indexes)

2 : Parse aux= (r1, . . . ,rℓ) ∈ Zℓ
|G|

3 : Interpolate the remaining elements: for j ∈ [ℓ− t, ℓ] : g j←∏i∈[ℓ−t]∪{0} g
L([ℓ−t]∪{0},i)(j)
i

4 : for j ∈ B : r′j← r j

5 : for j ∈ E : r′j← r j− y j · (v′ j−v j)

6 : return r′

com← BindCom(pp,ck,v,r):

1 : Interpolate the remaining elements: for j ∈ [ℓ− t, ℓ] : g j←∏i∈[ℓ−t]∪{0} g
L([ℓ−t]∪{0},i)(j)
i ∈G

2 : Commit individually: for j ∈ [ℓ] : com j← hr j ·gv j
j ∈G

3 : return (com1, . . . ,comℓ)

Figure 4.2: t-of-ℓ binding commitment from discrete log in the CRS model.

of the commitment scheme can be found in Figure 4.2. While our construction does
require a CRS, we note that the CRS is just two randomly selected group elements12,
which in practice can be generated by hashing a ‘nothing-up-by-sleeve’ constant to
the curve by using a cryptographic hash function.

Theorem 1 Under the discrete log assumption (Definition 13), for any (t, ℓ) with
t < ℓ: the scheme shown in Figure 4.2 is a family of (perfectly hiding, computationally
binding) t-of-ℓ partially binding commitment schemes.

12Like regular Pedersen commitments

4.5. PARTIALLY-BINDING VECTOR COMMITMENTS 53

The security reduction is straightforward and tight: for each position i in which
the adversary A manages to equivocate we can extract the discrete log of gi (as for
regular Pedersen commitments), if we extract the discrete log in ℓ− t+1 positions, we
have sufficient points on the degree ℓ− t polynomial to recover f[ℓ]∪{0}(X) explicitly
and simply evaluate it at 0 to recover the discrete log of g0 from pp. We present a
formal description of this reduction to the discrete log assumption below.

Remark 1 To commit to longer strings a collision resistant hash H : {0,1}∗→ Z|G|
is used to compress each coordinate before committing using BindCom/EquivCom as
a black-box: by committing to v′ = (H(v1), . . . ,H(vℓ)) instead. Note that the discrete
log assumption (Definition 13), used above, also implies the existance of collision
resistant hash functions.

Definition 5 (Discrete Log Assumption) There exists a PPT algorithm GenGroup(1λ)
which returns a description of a prime-order cyclic group G (written multiplicatively)
which admits efficient sampling, st. for all PPT algorithms A :

Pr
[
A (1λ ,G,g,h) = y | G← GenGroup(1λ);h $←−G;y $←− Z|G|;g← hy

]
= negl(λ)

For some negligible function negl(λ).

Proof 1 (Theorem 1) Completeness of partial equivocation for the scheme in Figure
4.2 is easily seen (follows from equivocation of Pedersen commitments), so we focus
on computational binding and perfect hiding.

Computational Binding Let Ak be a PPT algorithm winning the binding game with
probability ε i.e.

ε = Pr

[
∄S⊂ [ℓ], |S| ≥ t, s.t. i ∈ S,v1,i = . . .= vk,i ∧

BindCom(pp,ck,v1;r1) = . . .= BindCom(pp,ck,vk;rk)∣∣∣∣∣ pp← Setup(1λ);

(ck,v1, . . . ,vk,r1, . . . ,rk)←Ak(1λ ,pp)

]
Then the PPT algorithm A ′ shown in Figure 4.10 wins the discrete log game
(computing y0 st. g0 = hy0) with probability ≥ ε . To see this observe that,
when Ak wins the binding game: it follows that there exists a set S such that its
complement S has size |S| ≥ ℓ−t+1 and since ∀α,β ∈ [k] : (com1, . . . ,comℓ)=
BindCom(pp,ck,v(α)) = BindCom(pp,ck,v(β)) ∈Gℓ, we can extract yi ∈ Z|G|
st. gi = hyi whenever v(α)

i ̸= v(β)i by observing:

gv(α)
i

i hr(α)
i = comi = gv(β)i

i hr(β)i

gv(β)i − v(α)
i

i = hr(α)
i − r(β)i

gi = hyi = h(r
(α)
i − r(β)i)/(v(β)i − v(α)

i)

54
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Consider X ⊆ℓ−t+1 S defined as in A ′, let fX (X) := ∑i∈X yi ·L(X ,i)(X) ∈
Z|G|[X]. Consider f[ℓ−t]∪{0}(X) := ∑i∈[ℓ−t]∪{0} yi · L([ℓ−t]∪{0},i)(X) defined by
the unique y0,y1, . . . ,yℓ−t ∈ Z|G| with g0 = hy0 , . . . ,g1 = hy1 , . . . ,gℓ−t = hyℓ−t

where ck = (g1, . . . ,gℓ−t). Observe that ∀ j ∈X : fX (j) = f[ℓ]∪{0}(j) hence
fX = f[ℓ−t]∪{0} since both are degree ℓ− t < |X | polynomials. Therefore
the algorithm recovers fX (0) = f[ℓ]∪{0}(0) = ∑i∈X yi · L(X ,i)(0) = y0, with
g0 = hy0 , by definition of f[ℓ]∪{0}. Note that the security reduction is tight.

y0←A ′Ak(1λ ,G,g0,h): computes the discrete log of g0 in h given oracle access to Ak.

1 : Let pp= (G,g0,h)

2 : (ck,v(1), . . .v(k),r(1), . . . ,r(k))←Ak(1λ ,pp)

3 : S = {i | ∃ (α,β) : v(α)
i ̸= v(β)i } ⊆ [ℓ], if |S| ≤ ℓ− t : return ⊥

4 : for i ∈ S compute the discrete log in h: yi← (r(α)
i − r(β)i)/(v(β)i − v(α)

i)

5 : Pick X ⊆ℓ−t+1 S, compute y0← ∑i∈X yi ·L(X ,i)(0)

6 : return y0

Figure 4.3: Reduction for partially binding commitment scheme to discrete log.

Perfect Hiding Recall that we denote the set of binding indexes as B, and its com-
plement (the set of indexes that support equivocation) as E. Observe that for
any E the distribution of ck = (g1, . . . ,g[ℓ]−t) is uniform in Gℓ−t: since the
distribution of {g j} j∈E is uniform and {g j} j∈[ℓ−t] is computed as a bijection
of {g j} j∈E . Hence the distribution of ck is independent of E (and B), and the
binding indexes are perfectly hidden. The perfect hiding of the commitment
(com1, . . . ,comℓ) follows directly from perfect hiding of Pedersen commitments:
each comi is sampled i.i.d. uniform from G. Finally, note that r is distributed
uniformly in Zℓ

|G|, both when committing using BindCom and equivocating with
EquivCom.

Generic Construction of 1-of-2q Partially-Binding Vector Commitment.

From a 1-of-2 partial-binding vector commitment scheme, it is easy to obtain a 1-of-
2q binding scheme in which the communication complexity grows linearly in q (i.e.
logarithmically in the dimension of the vector), this is achieved by computing a tree
of commitments in which the leafs are the entries of the vector being committed to
and each internal node is formed by committing to its children: other commitments.
There is one commitment key per level and the final commitment is the root of the tree.
This means that the binding indexes in the commitment keys encode a path though
the tree, leading to a single binding leaf, where as every other path though the tree can

4.5. PARTIALLY-BINDING VECTOR COMMITMENTS 55

pp← Setup(1λ)

1 : ppA← PBCommA.Setup(1λ)

2 : ppB← PBCommB.Setup(1λ)

3 : return (ppA,ppB)

(ck,ek)← Gen(pp= (ppA,ppB),B = {i})
1 : Compute iA = i mod ℓA, iB = ⌊i/ℓA⌋
2 : (ckA,ekA)← PBCommA.Gen(ppA,{iA})
3 : (ckB,ekB)← PBCommB.Gen(ppA,{iB})
4 : return (ckA,ckB),(ekA,ekB, i)

(com,aux)← EquivCom(pp= (ppA,ppB),ek= (ekA,ekB, i),v):

1 : Compute iA = i mod ℓA, iB = ⌊i/ℓA⌋
// Form a length ℓA vector vA, which is zero everywhere except at iA where it is vi

2 : v(A)← 0;v(A)iA
← vi

3 : (comA,auxA)← PBCommA.EquivCom(ppA,ekA,v(A))

// Form a length ℓB vector vB, which is zero everywhere except at iB where it is comA

4 : v(B)← 0;v(B)iB ← comA

5 : (comB,auxB)← PBCommB.EquivCom(ppB,ekB,v(B))
// Return the root/outer commitment

6 : return (comB,(auxA,auxB))

r← Equiv(pp= (ppA,ppB),ek= (ekA,ekB, i),v,v′,aux= (auxA,auxB)):

1 : Compute iA = i mod ℓA, iB = ⌊i/ℓA⌋
// Equivocate the inner commitment

2 : v(A)← 0;v(A)iA
← vi

3 : v(A)′← (v′iBℓB+1, . . . ,v
′
(iB+1)ℓB

) // Note v(A)iA

′
= v(A)iA

4 : rA← PBCommA.Equiv(ppA,ekA,v(A),v(A)′)

// Recompute v(B)

5 : v(B)← 0;v(B)iB ← PBCommA.BindCom(pp,ckA,v(A),rA)

// Commit to every chunk using the same randomness rA to obtain v(B)
′

6 : v(B)
′← 0; for j ∈ 1, . . . , ℓB :

7 : v̂′ j← (v′jℓB+1, . . . ,v
′
(j+1)ℓB

) // Next "chunk" of v′

8 : v(B)j
′
← PBCommA.BindCom(ppA,ckA, v̂′ j,rA)

// Note v(B)iB

′
= v(B)iB

. Equivocate the outer commitment

9 : rB← PBCommB.Equiv(ppB,ekB,v(B),v(B)
′
)

10 : return (rA,rB)

com← BindCom(pp= (ppA,ppB),ck= (ckA,ckB),v,r = (rA,rB)):

// Commit to every chunk using the same randomness rA to obtain v(B)

1 : v(B)← 0; for j ∈ 1, . . . , ℓB :
2 : v̂ j← (v jℓB+1, . . . ,v(j+1)ℓB) // Next "chunk" of v

3 : v(B)j ← PBCommA.BindCom(ppA,ckA, v̂ j,rA)

// Commit to the vector of commitments v(B) to obtain the final commitment

4 : return PBCommB.BindCom(ppB,ckB,v(B),rB)

Figure 4.4: Generic construction of 1-of-ℓAℓB binding commitment from a 1-of-ℓA

binding commitment scheme and a 1-of-ℓB binding commitment scheme.

56
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

be equivocated at some layer. To formalize this, we describe the case of a tree with
just two layers, as described below, then apply the transformation iteratively:

Theorem 2 (1-of-(ℓAℓB) partial-binding from 1-of-ℓA and 1-of-ℓB partial-binding.)
Given compressing 1-of-ℓA and 1-of-ℓB partial-binding vector commitment schemes
PBCommA, PBCommB with communication complexity CC(PBCommA) and CC(PBCommB)
respectively, there exists a 1-of-(ℓA · ℓB) partial-binding vector commitment with com-
munication complexity CC(PBCommA)+CC(PBCommB) making black-box use of
the underlying PBCommA and PBCommB.

Proof 2 The construction works by forming partially binding commitments to partially
binding commitments as follows: 1) split the vector v into ℓB chunks v̂1, . . . , v̂ℓB of
size ℓA each, 2) commit to each chunk individually using PBCommA with the same
commitment key ckA, obtain commitment v(B) = (com1, . . . ,comℓB), 3) commit to the
commitments v(B) using PBCommB and corresponding commitment key ckB. This
scheme is formally described in Figure 4.4. Binding and hiding follows easily from
binding and hiding respectively of PBCommA and PBCommB.

By applying this transformation iteratively q times to a 1-of-2 binding scheme,
we obtain a 1-of-2q binding scheme with communication linear in q.

Corollary 1 There exists a (concretely efficient) 1-of-2q binding commitment scheme
with O(λ · q)-communication (for committing and opening) from the discrete log
assumption.

Proof 3 Apply the transformation from Figure 4.4 q times iteratively to the scheme
from Theorem 1 with ℓ = 2 and t = 1. i.e. let the original scheme from Theo-
rem 1 be PBComm1, compose PBComm1 with itself to obtain a new 1-of-22 binding
scheme PBComm2, then compose PBComm2 with PBComm1 to obtain a 1-of-23

binding scheme PBComm3, then compose PBComm3 with PBComm1 to obtain a
1-of-24 binding scheme PBComm4, etc. At every step the communication grows by
CC(PBComm1), hence the communication of PBCommq is q ·CC(PBComm1).

4.6 Stackable Σ-Protocols

In this section, we present the properties of Σ-protocols that our stacking framework
requires and show that many Σ-protocols satisfy these properties.

Properties of Stackable Σ-Protocols.

We start by formalizing the definition of a “stackable” Σ-protocol. As discussed
in Section 4.3, a Σ-protocol is stackable (meaning, it can be used by our stacking
framework), if it satisfies two main properties: (1) simulation with respect to a specific
third round message, and (2) recyclable third round messages.

4.6. STACKABLE Σ-PROTOCOLS 57

Cheat Property: “Extended” Honest Verifier Zero-Knowledge.

We view “simulation with respect to a specific third round message” as a natural
strengthening of the typical special honest verifier zero-knowledge property of Σ-
protocols. At a high level, this property requires that it is possible to design a simulator
for the Σ-protocol by first sampling a random third round message from the space of
admissible third round messages, and then constructing the unique appropriate first
round message. We refer to such a simulator as an extended simulator. A similar
notion is considered by Abe et. al [AOS02] in their definition of type-T signature
schemes: a type-T signature scheme is essentially the Fiat-Shamir[FS87] heuristic
applied to an EHVZK Σ-protocol.

Definition 6 (EHVZK Σ-Protocol) Let Π = (A,Z,φ) be a Σ-protocol for the NP
relation R, with a well-behaved simulator. We say that Π is “extended honest-verifier
zero-knowledge (EHVZK)” if there exists a polynomial time computable deterministic

“extended simulator” S EHVZK such that for any (x,w)∈R and c∈ {0,1}κ , there exists
an efficiently samplable distribution D

(z)
x,c such that:

{
(a,c,z) | rp $←− {0,1}λ ;a← A(x,w;rp);z← Z(x,w,c;rp)

}
≈
{
(a,c,z) | z $←−D

(z)
x,c ;a←S EHVZK(1λ ,x,c,z)

}
The natural variants (perfect/statistical/computational) of EHVZK are defined depend-
ing on which class of distinguishers for which ≈ is defined.

At first glace, the EHVZK definition can appear contrived, however in practice
this is often how simulators for Σ-protocols are constructed: picking a third message
z for a given challenge c, then finding the first round message a which ‘matches’
without relying on the random coins needed to sample z. For instance, every ‘commit-
and-open’ Σ-protocol is EHVZK; this notably includes every protocol derived via
IKOS[IKOS07]. Despite this, we note that there exist Σ-protocols which are not
EHVZK in their natural form: consider a contrived Σ-protocol where z contains the
output of a one-way function evaluated on a; an extended simulator for such a protocol
would need to invert the one-way function. While clearly such protocols exist, to
our knowledge, none are of practical importance. Nevertheless, we observe that it is
possible to trivially compile any Σ-protocol into one for the same relation which is
EHVZK.

Observation 1 (All Σ-protocols can be made EHVZK.) Any Σ-protocol Π=(A,Z,φ)
can be transformed into an EHVZK Σ-protocol Π′ = (A′,Z′,φ ′) for the same relation.
We present one such transformation below:

58
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

A′(x,w;rP) 7→ a′

1 : Run a← A(x,w,rP)

2 : return a

Z′(x,w,c′;rP) 7→ z′

1 : Run z← Z(x,w,c′;rP)

2 : Run a← A(x,w;rP)

3 : return (a,z)

φ ′(x,a′,c′,z′) 7→ {0,1}
1 : Parse z′ = (a,z)

2 : return (a ?
= a′)∧φ(x,a,c′,z)

S EHVZK ′(x,c′,z′) 7→ a′

1 : Parse z′ = (a,z)

2 : return a

The transformation above simply uses the prover’s randomness to re-generate the
first round message a and appends it to the third round message, so the resulting
third round message is (a,z). The verifier additionally checks that the a’s contained
in the first round message and third round message match. Defining the extended
simulator for this transformed protocol is trivial: because the third round message
contains a copy of the first round message, the extended simulator need only parse
it out and return it. In this case, D

(z)
x,c is simply the output distribution of the Special

Honest-Verifier Zero-Knowledge simulator of Π. By construction, it is clear that the
protocol above is EHVZK for any Σ-protocol Π.

The challenge dependence on the distribution D
(z)
x,c might at first glance seem

inherent, as it is possible for Σ-protocols to have very different third round message
distributions depending on the challenge. Consider, for example, the Blum’s three
round graph Hamiltonicity Σ-protocol [Blu87]. The third round message is either a
Hamiltonian path or a graph isomorphism, depending on the challenge, which can
be represented with very different distributions. However, it would be convenient,
both notationally and conceptually, to remove this dependence from the definition of
EHVZK. We note that another simple transformation can be applied to any EHVZK
Σ-protocol such that it satisfies a challenge-independent version of Definition 6. This
observation is similar to that of Cramer et. al [CDS94] in relation to SHVZK from
HVZK.

Definition 7 (Challenge-independent EHVZK Σ-Protocol) Let Π = (A,Z,φ) be a
Σ-protocol for the NP relation R. We say that Π is “challenge-independent ex-
tended honest-verifier zero-knowledge ” if there exists a polynomial time computable
deterministic “challenge-independent extended simulator” S CIEHVZK such that for
any (x,w) ∈R there exists an efficiently samplable distribution D

(z)
x such that:

{
(a,c,z) | rp $←− {0,1}λ ;a← A(x,w;rp);z← Z(x,w,c;rp)

}
≈
{
(a,c,z) | z $←−D

(z)
x ;a←S CIEHVZK(1λ ,x,c,z)

}

4.6. STACKABLE Σ-PROTOCOLS 59

Observation 2 (EHVZK Σ-protocol to challenge-independent EHVZK) We note
that any EHVZK Σ-protocol can be transformed to be challenge-independent EHVZK.
Let Π = (A,Z,φ) be an EHVZK Σ-protocol with a ‘challenge-dependent’ distribution
D

(z)
x,c over last-round messages and define Π′ = (A′,Z′,φ ′) as shown below:

A′(x,w;rP) 7→ a′

1 : Sample ∆
$←− {0,1}κ

2 : Run a← A(x,w;rP)

3 : return (a,∆)

Z′(x,w,c′;rP) 7→ z′

1 : Define c = c′⊕∆

2 : Run z← Z(x,w,c;rP)

3 : return (z,c)

φ ′(x,a′,c′,z′) 7→ {0,1}
1 : Parse a′ = (a,∆),z′ = (z,_)

2 : Define c = c′⊕∆

3 : return φ(x,w,c,z)

S CIEHVZK ′(x,c′,z′) 7→ a′

1 : Parse z′ = (z,c)

2 : Define ∆ = c⊕ c′

3 : Run a←S EHVZK(x,c,z)

4 : return (a,∆)

In this transformation, we append a random string ∆ to the first round message. The
third round message algorithm then xor’s ∆ with the challenge provided by the verifier
before computing the third round message z. Additionally, it appends the resulting
challenge c to the third round message. The verifier recomputes c and verifies the
transcript using c. The resulting protocol Π′ satisfies De f inition 7, i.e. the family

D
(z)
x,c
′

has the same distribution across all c. To sample from the distribution D
(z)
x ,

simply sample c $←− {0,1}κ randomly, then sample from D
(z)
x,c i.e.

D
(z)
x :=

{
(z,c) | c $←− {0,1}κ ;z $←−D

(z)
x,c

}
The challenge-independent extended simulator S CIEHVZK ′ of Π′ picks ∆ such that
the difference between c′ and ∆ is c and runs the extended simulator of Π on z with
challenge c = c′⊕∆.

It is straightforward to move from one definition to the other (by applying the
compiler in Observation 2), however many existing Σ-protocol are naturally EHVZK
for Definition 6 and therefore it is more convenient to use this more relaxed definition
when showing that particular Σ-protocols are EHVZK. As such, for the remainder of
the main body of this work, we will use Definition 6.

Re-use Property: Recyclable Third Round Messages.

The next property that our stacking compilers require is that the distribution of third
round messages does not significantly rely on the statement. In more detail, given
a fixed challenge, the distribution of possible third round messages for any pair of
statements in the language are indistinguishable from each other. We formalize this

60
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

property by using D
(z)
c to denote a single distribution with respect to a fixed challenge

c. We say that a Σ-protocol has recyclable third round messages, if for any statement
x in the language the distribution of all possible third round messages corresponding
to challenge c is indistinguishable from D

(z)
c . We now formally define this property:

Definition 8 (Σ-Protocol with Recyclable Third Messages) Let R be an NP rela-
tion and Π = (A,Z,φ) be a Σ-protocol for R, with a well-behaved simulator. We
say that Π has recyclable third messages if for each c ∈ {0,1}κ , there exists an effi-
ciently sampleable distribution D

(z)
c , such that for all instance-witness pairs (x,w) st.

R(x,w) = 1, it holds that

D
(z)
c ≈

{
z | rp $←− {0,1}λ ;a← A(x,w;rp);z← Z(x,w,c;rp)

}
.

This property is fundamental to stacking, as it means that the contents of the third
round message do not ‘leak information’ about the statement used to generate the
message. This means that the message can be safely re-used to generate transcripts
for the non-active clauses and an adversary cannot detect which clause is active.13

Although this property might seem strange, we will later show that many natural
Σ-protocols have this property.

Stackability

With our two-properties formally defined, we are now ready to present the definition
of stackable Σ-protocols:

Definition 9 (Stackable Σ-Protocol) We say that a Σ-protocol Σ = (A,Z,φ) is stack-
able, if it is EHVZK (see Definition 6) and has recyclable third messages (see Definition
8).

We now note a useful property of stackable Σ-protocols that follow directly from
Definition 9:

Remark 2 Let Σ = (A,Z,φ) be a stackable Σ-protocol for the NP relation R, with
a well-behaved simulator. Then for each c ∈ {0,1}λ and any instance-witness pair
(x,w) with R(x,w) = 1, an honestly computed transcript is computationally indistin-
guishable from a transcript generated by sampling a random third round message
from D

(z)
c and then simulating the remaining transcript using the extended simulator.

More formally,{
(a,z) | rp $←− {0,1}λ ;a← A(x,w;rp);z← Z(x,w,c;rp)

}
≈
{
(a,z) | z $←−D

(z)
c ;a←S EHVZK(1λ ,x,c,z)

}
Looking ahead, these observations will be critical in proving security of our compilers
in Sections 4.7 and 4.8.

13We further elaborate on this in Remark 2.

4.6. STACKABLE Σ-PROTOCOLS 61

Classical Examples of Stackable Σ-Protocols

In this section, we show some examples of classical Σ-protocols which are stackable.
Rather than considering multiple classical Σ-protocols like Schnorr and Guillou-
Quisquater separately, we consider the generalization of these protocols as explored
in [CD98]. Once we show that this generalization is stackable, it is simple to see that
specific instantiations are also stackable.

Lemma 1 (Σ-protocol for ψ-preimages [CD98] is stackable) Let G∗1 and G∗2 be groups
with group operations ∗1,∗2 respectively (multiplicative notation) and let ψ :G∗1→G∗2
be a one-way group-homomorphism. Recall the simple Σ-protocol (Πψ) of Cramer

and Damgård [CD98] for the relation of preimages Rψ(x,w) := x ?
= ψ(w), where

x ∈G∗2,w ∈G∗1. The protocol is a generalization of Schnorr [Sch90] and works as
follows:

• A(x,w;rp), the prover samples r $←−G∗1 and sends the image a = ψ(r) ∈G∗2 to
the verifier.

• Z(x,w,c;rp), the prover intreprets c as an integer from a subset C ⊆ Z and
replies with z = wc ∗1 r

• φ(x,a,c,z), the verifier checks ψ(z) = xc ∗2 a.

Completeness follows since ψ is a homomorphism: ψ(z) = ψ(wc ∗1 r) = ψ(w)c ∗2
ψ(r) = xc ∗2 a. The knowledge soundness error is 1/|C| (see [CD98] for more details).
For any homomorphism ψ , Πψ is stackable:

Proof 4 To see that Πψ is stackable, define an extended simulator and check for
recyclable third messages:

1. Πψ is EHVZK: Let D
(z)
x,c := {z | z $←−G∗1}, let S EHVZK(1λ ,x,c,z) := ψ(z)∗2 x−c

2. Πψ has recyclable third messages: Observe that ∀x1,x2 : D
(z)
x1,c = D

(z)
x2,c =

U (G∗1)
14.

Remark 3 The following variants of Πψ (with different choices of G∗1,G
∗
2,ψ) are

captured in this generalization (along with other similar Σ-protocols):

(1) Guillou-Quisquater [GQ90] (e-roots in an RSA group) for which G∗1 =G∗2 =Z∗n
for a semi-prime n = pq, C = [0,e) and ψ(w) := we for some prime e ∈ N.

(2) Schnorr[Sch90] (knowledge of discrete log): for which G∗1 = Z+
|G|,G

∗
2 = G

where G is a cyclic group of prime order |G|, C = [0, |G|) and ψ(w) := gw for
some g ∈G.

14Uniform distribution over G∗1.

62
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

(3) Chaum-Pedersen [CP93] (equality of discrete log): for which G∗1 = Z+
|G|,G

∗
2 =

G×G where G is a cyclic group of prime order |G|, C = [0, |G|) and ψ :
Z|G|→G×G, ψ(w) := (gw

1 ,g
w
2) for g1,g2 ∈G.

(4) Attema-Cramer [AC20] (opening of linear forms): for which G∗1 = Zℓ
|G|×Z|G|,

G∗2 = (Z|G|,G), C = [0, |G|) and ψ((x,γ)) := (L(x),gxhγ) for some linear form
L(x) = ⟨x,s⟩, s ∈ Zℓ

|G|

We also show that a variant of Blum’s classic 3 move protocol [Blu87] for graph
Hamiltonicity is stackable in Section 4.11. This is not surprising, since in the third
round the prover either: (1) opens a Hamiltonian path in a permutation of the graph.
(2) provides the randomness for the commitment to the permuted adjacency matrix.
In either case the distribution of third round messages only depends on the number
of vertices in the Hamiltonian graph: either a cycle of n vertices or n2 openings of
commitments (random strings).

Lemma 2 Blum’s Σ-protocol [Blu87] is stackable.

The proof of Lemma 2 can be found in Section 4.11

Examples of Stackable “MPC-in-the-Head” Σ-Protocols

We now proceed to show that many natural “MPC-in-the-head” style [IKOS07]
Σ-protocols (with minor modifications) are stackable. MPC-in-the-head (henceforth
refereed to as IKOS) is a technique used for designing three-round, public-coin,
zero-knowledge proofs using MPC protocols. At a high level, the prover emulates
execution of an n-party MPC protocol Π virtually, on the relation function R(x, ·)
using the witness w as input of the parties, and commits to the views of each party.
An honest verifier then selects a random subset of the views to be opened and verifies
that those views are consistent with each other and with an honest execution, where
the output of Π is 1.

Achieving EHVZK. Since the first round messages in such protocols only consist
of commitments to the views of all virtual partials, a subset of which are opened in
the third round, a natural simulation strategy when proving zero-knowledge of such
protocols is the following: (1) based on the challenge message, determine the subset
of parties whose views will need be opened later, (2) imagining these as the “corrupt”
parties, use the simulator of the MPC protocol to simulate their views, and, finally,
(3) compute commitments to these simulated views for this subset of the parties and
commitments to garbage values for the remaining virtual parties. Clearly, since the
first round messages in this simulation strategy are computed after the third round
messages, these protocols are naturally EHVZK.

Achieving recyclable third messages. To show that these Σ-protocols have recyclable
third messages, we observe that in many MPC protocols, an adversary’s view can
often be condensed and decoupled from the structure of the functionality/circuit being

4.6. STACKABLE Σ-PROTOCOLS 63

evaluated. We elaborate this point with the help of an example protocol — semi-honest
BGW [BGW88].

Recall that in the BGW protocol, parties evaluate the circuit in a gate-by-gate
fashion on secret shared inputs15 as follows: (1) for addition gates, the parties locally
add their own shares for the incoming wire values to obtain shares of the outgoing wire
values. (2) For multiplication gates, the parties first locally multiply their own shares
for the incoming wire values and then secret share these multiplied share amongst the
other parties. Each party then locally reconstructs these “shares of shares” to obtain
shares of the outgoing wire values. (3) Finally, the parties reveal their shares for all
the output wires in the circuit to all other parties and reconstruct the output.

By definition, the view of an adversary in any semi-honest MPC protocol is
indistinguishable from a view simulated by the simulator with access to the corrupt
party’s inputs and the protocol output. Therefore, to understand the view of an
adversary in this protocol, we recall the simulation strategy used in this protocol:

1. For each multiplication gate in the circuit, the simulator sends random values
on behalf of the honest parties to each of the corrupt parties.

2. For the output wires, based on the messages sent to the adversary in the previous
step and the circuit that the parties are evaluating, the simulator first computes
the messages that the corrupt parties are expected to send to the honest parties.
It then uses these messages and the output of protocol to simulate the messages
sent by the honest parties to the adversary. Recall that this can be done because
these messages correspond to the shares of these parties for the output wire
values, and in a threshold secret sharing scheme, the shares of an adversary and
the secret, uniquely define the shares of the remaining parties.

Observe that the computation done by the simulator in the first part is independent
of the actual circuit or function being computed (it only depends on the number of
multiplication gates in the circuit). We refer to the messages computed in (1) and the
inputs of the corrupt parties as the condensed view of the adversary. Additionally,
given these simulated views, the output of the protocol, and the circuit/functionality,
the simulated messages of the honest parties in (2) can be computed deterministically.
Looking ahead, because the output of relation circuits — the circuits we are inter-
ested in simulating — should always be 1 to convince the verifier, this deterministic
computation will be straight forward. Since the condensed view is not dependent on
the function being computed, it can be used with “any” functionality in the second
step to compute the remaining view of the adversary. In other words, given two
arithmetic circuits with the same number of multiplication gates, the condensed views
of the adversary in an execution of the BGW protocol for one of the circuits can be
re-interpreted as their views in an execution for the other one. We note that circuits
can always be “padded” to be the same size, so this property holds more generally.

15These shares are computed using some threshold secret sharing scheme, e.g., Shamir’s polynomial
based secret sharing [Sha79].

64
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

As a result, for IKOS-style protocols based on such MPC protocols, while some
strict structure must be imposed upon third round messages (which are views of a
subset of virtual parties) when verifying that they have been generated correctly, the
third round messages themselves can simply consist of these condensed views (and
not correspond to any particular functionality) and hence can be re-used. To make
this work, we must make a slight modification to the IKOS compiler. As before, in
the first round, the prover will commit to the views (where they are associated with
a given function f) of all parties in the first round. However, in the third round, the
prover can simply send the condensed views of the opened parties to the verifier. The
verifier can deterministically compute the remaining view of these parties w.r.t. the
appropriate relation function f and check if they are consistent amongst each other
and with the commitments sent in the first round. Since the third round messages in
this protocol are not associated with any function, it is now easy to see that they can
be the distribution of these messages is independent of the instance.

Building on this intuition, we show that many natural MPC protocols produce
stackable Σ-protocols for circuits of the same size when used with the IKOS compiler.
Before giving a formal description of the required MPC property, we recall the IKOS
compiler in more detail, assuming that the underlying MPC protocol has the following
three-functions associated with it: ExecuteMPC emulates execution of the protocol
on a given function with virtual parties and outputs the actual views of the parties,
CondenseViews takes the views of a subset of the parties as input and outputs their
condensed views, and ExpandViews takes the condensed views of a subset of the
parties and returns their actual view w.r.t. a particular function.

IKOS Compiler. Let f = R(x, ·). In the first round, the prover runs ExecuteMPC
on f and the witness w to obtain views of the parties and commits to each of these
views. In the second round, the verifier samples a random subset of parties as its
challenge message. Size of this subset is equal to the maximal corruption threshold
of the MPC protocol. In the third round, the prover uses CondenseViews to obtain
condensed views for this subset of parties and sends them to the verifier along with
the randomness used to commit to the original views of these parties in the first round.
The verifier runs ExpandViews on f and the condensed views received in the third
round to obtain the corresponding original views. It checks if these are consistent with
each other and are valid openings to commitments sent in the first round. Depending
on the corruption threshold and the security achieved by the underlying MPC protocol,
the above steps might be repeated a number of times to reduce the soundness error.
Below we restate the main theorem from [IKOS07], which also trivially holds for our
modified variant.

Theorem 3 (IKOS [IKOS07]) Let L be an NP language, R be its associated NP-
relation and F be the function set {R(x, ·) : ∀x ∈L }. Assuming the existence of
non-interactive commitments, the above compiler transforms any MPC protocol for
functions in F into a Σ-protocol for the relation R.

4.6. STACKABLE Σ-PROTOCOLS 65

Next, we formalize the main property of MPC protocols that facilitates in achiev-
ing recyclable third messages when compiled with the above IKOS compiler. We
characterize this property w.r.t. a function set F , and require the MPC protocol to be
such that the condensed views can be expanded for any f ∈F . For our purposes, it
would suffice, even if the condensed view of the adversary is dependent on the final
output of the protocol, as long as it is independent of the functionality. This is because,
in our context, the circuit being evaluated will be a relation circuit with the statement
hard-coded and should always output 1 in order to convince the verifier.

Definition 10 (F -universally simulatable MPC) Let Π be an n-party MPC proto-
col that is capable of securely computing any function f ∈F (where F : X n→ O)
against any semi-honest adversary A who corrupts a set I ⊂ [n] of parties, such
that I ∈ C , where C is the set of admissible corruption sets. We say that Π is
F -universally simulatable if there exists a 3-tuple of PPT functions (ExecuteMPC,
ExpandViews,CondenseViews) and a non-uniform PPT simulator S F-MPC : F ×C ×
O →V ∗, defined as follows

• ({viewi}i∈[n],o)← ExecuteMPC(f ,{xi}i∈[n]): This function takes inputs of the
parties {xi}i∈[n] ∈X n and a function f ∈F as input and returns the views
{viewi}i∈[n] of all parties and their output o ∈ O in protocol Π.

• {con.viewi}i∈I ← CondenseViews(f ,I ,{viewi}i∈I ,o): This function takes
as input the set of corrupt parties I ∈C , views of the corrupt parties {viewi}i∈I
and the output of the protocol o ∈ O and returns their condensed views
{con.viewi}i∈I .

• {viewi}i∈I ← ExpandViews(f ,I ,{con.viewi}i∈I ,o): This function takes as
input the functionality f ∈F , set of corrupt parties I ∈ C , condensed views
{con.viewi}i∈I of the corrupt parties and the output of the protocol o ∈O and
returns their views {viewi}i∈I .

• {con.viewi}i∈I ←S F-MPC(f ,I ,{xi}i∈I ,o): The simulator takes as input the
functionality f ∈F , set of corrupt parties I ∈ C , inputs of the corrupt parties
{xi}i∈I ∈X |I | and the output of the protocol o ∈ O and returns simulated
condensed views {con.viewi}i∈I of the corrupt parties.

And these functions satisfy the following properties:

1. Condensing-Expanding Views is Deterministic: For all {xi}i∈[n] ∈X n and
∀ f ∈F , let ({viewi}i∈[n],o)← ExecuteMPC(f ,{xi}i∈[n]). For all I ∈ C it
holds that:

Pr [ExpandViews(f ,I ,CondenseViews(f ,I ,{viewi}i∈I ,o),o) = {viewi}i∈I] = 1

2. Indistinguishability of Simulated Views from real execution: For all {xi}i∈[n] ∈
X n and ∀ f ∈ F , let ({viewi}i∈[n],o)← ExecuteMPC(f ,{xi}i∈[n]). For all
I ∈ C it holds that:

CondenseViews(f ,I ,{viewi}i∈I ,o)≈S F-MPC(f ,I ,{xi}i∈I ,o)

66
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

3. Indistinguishability of Simulated Views for all functions: For any I ∈ C , all
inputs {xi}i∈I ∈X |I | of the corrupt parties, and all outputs o∈O , there exists
a function-independent distribution D{xi}i∈I ,o, such that ∀ f ∈F , if ∃{xi}i∈[n]\I
for which f ({xi}i∈[n]\I ,{xi}i∈I) = o, then it holds that:

D{xi}i∈I ,o ≈S F-MPC(f ,I ,{xi}i∈I ,o)

We note that a central notion used in the “stacked-garbling literature” (for com-
munication efficient disjunction for garbled circuit based zero-knowledge proofs) is a
special case of F -universally simulatable:

Remark 4 (Topology Decoupled Garbled Circuits and F -universally simulatable MPC.)
The notion of topology decoupled garbled circuits introduced by Kolesnikov [Kol18]
is a special case of F -universally simulatable MPC: a topology decoupled garbled
circuit (E,T) separates the cryptographic material (E, e.g. garbling tables) and
topology (T , i.e. wiring) of a garbled circuit and (informally stated) requires that gen-
erating E for different topologies introduces indistinguishable distributions. Letting
X be the garbled input labels16 held by the evaluator, in F -universally simulatable
terminology (E,X) would constitute the “condensed view”, while (E,X ,T)17 would
constitute the “expanded views” , indistinguishablilty of simulated views for functions
with the same number of gates and inputs follows easily from the “topology decoupling“
of the garbled circuits and the uniform distribution of the input labels.

We now proceed to show that when instantiated with an F -universally simulatable
MPC protocol, Theorem 3 yields a stackable Σ-protocol for languages with relation
circuits in F .

Theorem 4 (F -universally simulatable implies stackable) The IKOS compiler (see
Theorem 3) yields an stackable Σ-protocol for languages with relation circuit in F
when instantiated with an F -universally simulatable MPC protocol (see Definition
10) with privacy and robustness (See Definitions 2,3) against a subset of the parties.

Proof 5 We define the distribution D
(z)
x,c , where c ∈ {0,1}κ describes a set of players

I ∈ C as follows:

D
(z)
x,c =

{
{con.viewi,ri}i∈I | {con.viewi}i∈I

$←−D{xi}i∈I ,1,{ri}i∈I
$←− {0,1}I ·λ

}
.

The EHVZK simulator (derived from the standard IKOS simulator) S EHVZK(1λ , f ,c,z)
takes a description f ∈F and challenge c∈{0,1}κ describing a set of players I ∈C ,

and third round message z = {con.viewi,ri}i∈I
$←−D

(z)
x,c and computes the first round

message as follows:

16Obtained using an oblivious transfer.
17Where T can be computed from f .

4.6. STACKABLE Σ-PROTOCOLS 67

It runs ExpandViews(f ,I ,{con.viewi}i∈I ,1) to obtain original views {viewi}i∈I .
It then commits to these original views of the opened parties {comi =Com(viewi;ri)}i∈I ,
and generates dummy commitments {comi = Com(0;ri)}i∈[n]\I for the views of the
remaining parties, using some additional randomness {ri}i∈[n]\I . It returns first
round message a = {comi}i∈[n].

We now argue indistinguishability between a real transcript and the above sim-
ulated transcript. Let H0 be the distribution over a real transcript and H3 be the
above simulated transcript. We define the following intermediate hybrids:

• H1: Compute dummy commitments instead of honest ones for the unopened
players in the first round. Indistinguishability between H0 and H1 follows from
the hiding property of commitments.

• H2: Instead of honestly computing {con.viewi}i∈I , sample these condensed
views from S F-MPC(f ,I ,{xi}i∈I ,1) and use ExpandViews(f ,I ,{con.viewi}i∈I ,1)
to obtain original views {viewi}i∈I . Indistinguishability between H2 and H3
follows from indistinguishability of simulated views from real execution (See
Definition 10) of the MPC protocol.

• H3: Instead of sampling {con.viewi}i∈I from D{xi}i∈I ,1, sample these con-
densed views from S F-MPC(f ,I ,{xi}i∈I ,1). Indistinguishability between H2
and H3 follows from indistinguishability of simulated views for all functions
(See Definition 10) of the MPC protocol and from the fact that condensing-
expanding views is a deterministic process.

From transitivity of computational indistinguishability, it follows that H0 ≈ H3.
Hence, this Σ-protocol achieves EHVZK. For recyclable third messages, we observe
that since D

(z)
x,c as defined above does not depend of the functionality of the MPC

protocol, it is also independent of the statement, which in the IKOS compiler is hard-
wired in the functionality. Therefore, D

(z)
c is the same as D

(z)
x,c and this protocol is

indeed stackable.

We now use Theorem 4 to show that two popular IKOS-based Σ-protocols are
stackable, namely KKW [KKW18] and Ligero [AHIV17]. The intuition is very
similar to that presented for semi-honest BGW above — condensed views (which
correspond to the third round messages sent in these protocols) can be used to simulate
transcripts with respect to multiple functionalities. We formally state this with respect
to functions of the same “size”, but note circuits can always be padded to have the
same size.

We prove the following Lemmas (and give a description of the underlying MPC
protocol in KKW and Ligero) in Section 4.14 and Section 4.15 respectively.

Lemma 3 (KKW [KKW18] is stackable) For any m ∈ N, the underlaying MPC in
KWW is F -universally simulatable for F consisting of circuits with m multiplications.

68
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Lemma 4 (Ligero [AHIV17] is stackable) For any m ∈ N, the underlaying MPC in
Ligero is F -universally simulatable for F consisting of circuits with m gates.

Well-Behaved Simulators

As outlined in Section 4.3, a critical step of our compilation framework is applying
the simulator of the underlying Σ-protocols to the inactive clauses. Note that these
inactive clauses might not be true (if the language is non-trivial), even though the
disjunction is satisfied, as such our framework should be applicable to the case where
some of the instances are false.

We note, however, that the behavior of a simulator is only defined with respect
to statements that are in the NP language — that is, true instances. As such, if the
disjunction contains false clauses, there is no guarantee that the simulator will produce
an accepting transcript. This would cause problems with verification — the verifier
will know that one of the transcripts is not accepting, but will not know if this is due
to a simulation failure or malicious prover. As such, we must carefully consider what
simulators will produce when executed on a false instance.

As noted in [GO94], the simulators that are commonly constructed in most proofs
of zero-knowledge will usually output accepting transcripts when executed on these
false instances. If the simulator were able to consistently output non-accepting
transcripts for false instances, it could be used to decide the NP language in polynomial
time. However, it is possible to define a valid simulator that produces an output that is
not an accepting transcript with non-negligible probability e.g. (1) the input instance
is trivially false (e.g. a connected graph with 4 nodes is not 3-colorable), or (2) the
simulator has a hard-coded set of false instances on which it deviates from its normal
behavior. Indeed, a probabilistic simulator may also output a non-accepting transcript
in each of these cases only occasionally, possibly depending on the challenge. Note
that in both cases, a verifier will also be able to detect that the input instance is false
simply by running the simulator themselves.

Looking ahead, if one of the underlying Σ-protocols has a simulator with this kind
of logic, our compiled protocol could have a non-negligible soundness error propor-
tional to the probability (over the random coins of the challenge) that the simulator
outputs a non-accepting transcript. Producing of a non-accepting transcript in this
way does not undermine zero-knowledge: simulation is only required for statements
in the language. However the verifier would reject the proof of the disjunction by an
honest prover, on the flip side, if the verification algorithm allows some transcript to
be non-accepting, a malicious prover could trivially exploit this property to violate
soundness. Therefore it is important for completeness that the simulator always
produces accepting transcripts.

We emphasize that this is a corner case: commonly constructed simulators will
produce accepting transcripts even on false instances. Nevertheless, We observe
that any Σ-protocol can be generically transformed into one that has a simulator
that outputs accepting transcripts for all statements. We refer to such simulators as
well-behaved simulators.

4.7. SELF-STACKING: DISJUNCTIONS WITH THE SAME PROTOCOL 69

Definition 11 (Well-Behaved Simulator) We say that a Σ-protocol Σ = (A,Z,φ) for
a NP language L and associated relation R(x,w) has a well-behaved simulator
if the simulator S defined for Special Honest Zero-Knowledge has the following
property: For any statement x (for both x ∈L and x ̸∈L),

Pr
[
φ(x,a,c,z) = 1 | c $←− {0,1}λ ;a←S (x,c)

]
= 1

We say that an EHVZK Σ-protocol has a well-behaved simulator if its extended
simulator S EHVZK has the natural extension of this property.

We formally prove the following theorem in Section 4.12.

Lemma 5 (Simulators are well-behaved without loss of generality) Every Σ-protocol
Π can be converted to a Σ-protocol Π′ for the same relation with a well-behaved sim-
ulator. Furthermore, if Π′ is EHVZK then Π′ is also EHVZK and if Π has recyclable
third messages then Π′ has recyclable third messages.

In all subsequent sections, we assume w.l.o.g. that all Σ-protocols, have a well-
behaved simulator and that is what we use in our compilers.

4.7 Self-Stacking: Disjunctions With The Same Protocol

We now present a self-stacking compiler for Σ-protocols, presented in Figure 4.5. By
self-stacking, we mean a compiler that takes a stackable Σ-protocol Π for a language
L and produces a Σ-protocol for language with disjunctive statements of the form
(x1 ∈L)∨ (x2 ∈L)∨ . . .∨ (xℓ ∈L) with communication complexity proportional
to the size of a single run of the underlying Σ-protocol (along with an additive factor
that is linear in ℓ and λ). The key ingredient in our compiler is the partially-binding
vector commitments (See Definition 4), which will allow the prover to efficiently
compute verifying transcripts for the inactive clauses.

The compiler generates an accepting transcript (aα ,c,z∗) to the active clause
α ∈ [ℓ] using the witness, and then simulates accepting transcripts for each non-active
clause, using the extended simulator. Recall that this extended simulator takes in a
third round message z and a challenge c and produces a first round message a such
that φ(x,a,c,z) = 1. Thus, the prover can re-use the third round message z∗, for each
simulated transcript, thereby reducing communication to the size of a single third
round message. For a more detailed overview, we refer the reader to Section 4.3.

We now present a formal description of the self-stacking compiler:

Theorem 5 (Self-Stacking) Let Π = (A,Z,φ) be a stackable (See Definition 9) Σ-
protocol for the NP relation R : X ×W → {0,1} and let (Setup,Gen,EquivCom,
Equiv,BindCom) be a 1-out-of-ℓ binding vector commitment scheme (See Definition
4). For any pp← Setup(1λ), the compiled protocol Π′ = (A′,Z′,φ ′) described in
Figure 4.5 is a stackable Σ-protocol for the relation R ′ : X ℓ× ([ℓ]×W)→ {0,1},
where R ′((x1, . . . ,xℓ),(α,w)) := R(xα ,w).

70
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Proof 6 We now prove that the protocol Π′ = (A′,Z′,φ ′) described in Figure 4.5 is a
stackable Σ-protocol for the relation R ′((x1, . . . ,xℓ),(α,w)) := R(xα ,w).

Completeness. Completeness follows directly from the completeness of the underlying
Σ-protocol and the commitment scheme. Note that because the underlying Σ-protocol
has a well-behaved simulator, the prover will not produce non-accepting transcripts
on any clauses embedding false instances.

Special Soundness. We create an extractor E ′ for the protocol Π′ using the extractor
E for the underlying Σ-protocol Π. The extractor E ′ is given two accepting transcripts
for the protocol Π′ that share a first round message, i.e. a,c,z,c′,z′. The extractor
uses this input to recover 2ℓ total transcripts (2 for each clause), (ai,c,z∗),(a′i,c

′,z′∗)
for i ∈ [ℓ]. By the partial binding property of the partially-binding vector com-
mitment scheme, with all but negligible probability there exists an α ∈ [ℓ] such
that aα = a′α . E ′ then invokes the extractor of Π on these transcripts to recover
w← E (1λ ,xα ,aα ,cα ,z∗,c′α ,z

′∗) and returns (α,w). Because the underlying extrac-
tor E cannot fail with non-negligable probability, the E ′ succeeds with overwhelming
probability.

Extended Honest-Verifier Zero-Knowledge (and Recyclable Third Messages). For

pp←Setup(1λ), let D (z)
c
′
:= {(ck,r,z) | (ck,ek)←Gen(pp,B= {1});r $←−{0,1}λ ;z $←−

D
(z)
c } be the simulated distribution over third round messages for Π′. We construct

the extended simulator for Π′ by running the underlying extended simulating S EHVZK

for every clause and committing to the tuple of first round message (a1, . . . ,aℓ) using
commitment key ck and randomness r:

a′←S EHVZK ′((x1, . . . ,xℓ),c,z′ = (ck,r,z))

1 : for i ∈ [ℓ] : Compute ai←S EHVZK
i (xi,c,zi)

2 : com← BindCom(pp,ck,v = (a1, . . . ,aℓ);r)

3 : return (ck,com)

Let D (α,w) denote the distribution of transcripts resulting from an honest prover pos-
sessing witness (α,w) running Π′ with an honest verifier on the statement (x1, . . . ,xℓ),
where D (α,w) is over the randomness of the prover and the verifier. We now proceed
using a hybrid argument. Let H (α) be the same as D (α,w), except let the first round
message of clause α be generated by simulation, i.e. aα ← S EHVZK(xα ,c,z). By
the EHVZK of Π, H (α) ≈ D (α,w). Next, let H (α,ck) be the same as H (α) except
let the commitment key ck be generated with the binding position as B = {1}, i.e.
(ck,ek)← Gen(pp,B = {1}). Observe that H (α,ck) p= H (α) by the (perfect) hiding
of the partially-binding commitment scheme. Lastly note that H (α,ck) matches the
output distribution of S EHVZK ′((x1, . . . ,xℓ),c,D

(z)
c
′
).

Therefore Π′ is a stackable Σ-protocol.

We now proceed to analyze the complexity of our resulting protocol.

4.7. SELF-STACKING: DISJUNCTIONS WITH THE SAME PROTOCOL 71

Self-Stacking Compiler

Statement: x = x1, . . . ,xn

Witness: w = (α,wα)

– First Round: Prover computes A′(x,w;rp)→ a as follows:

– Parse rp = (rp
α∥r).

– Compute aα ← A(xα ,wα ;rp
α).

– Set v = (v1, . . . ,vℓ), where vα = aα and ∀i ∈ [ℓ]\α , vi = 0.

– Compute (ck,ek)← Gen(pp,B = {α}).
– Compute (com,aux)← EquivCom(pp,ek,v;r).

– Send a = (ck,com) to the verifier.

– Second Round: Verifier samples c←{0,1}λ and sends it to the prover.

– Third Round: Prover computes Z′(x,w,c;rp)→ z as follows:

– Parse rp = (rp
α∥r).

– Compute z∗← Z(xα ,wα ,c;rp
α).

– For i ∈ [ℓ]/α , compute ai←S EHVZK(xi,c,z∗).

– Set v′ = (a1, . . . ,aℓ)

– Compute r′ ← Equiv(pp,ek,v,v′,aux) (where aux can be regenerated
with r).

– Send z = (ck,z∗,r′) to the verifier.

– Verification: Verifier computes φ ′(x,a,c,z)→ b as follows:

– Parse a = (ck,com) and z = (ck′,z∗,r′)

– Set ai←S EHVZK(xi,c,z∗)

– Set v′ = (a1, . . . ,aℓ)

– Compute and return:

b=(ck
?
= ck′)∧

(
com

?
= BindCom(pp,ck,v′;r′)

)
∧

∧
i∈[ℓ]

φ(xi,ai,c,z∗)


Figure 4.5: A compiler for stacking multiple instances of a Σ-protocol.

72
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Communication Complexity. Let CC(Π) be the communication complexity of
Π. Then, the communication complexity of the Π′ obtained from Theorem 5 is
(CC(Π)+ |ck|+ |com|+ |r′|), where the sizes of ck, com and r′ depends on the choice
of partially-binding vector commitment scheme and are independent of CC(Π). With
our instantiation of partially binding vector commitments, the size of |ck|, |r′| will
depend linearly on ℓ. However since our resulting protocol Π′ is also stackable,
the communication complexity can be reduced further to CC(Π) + 2log(ℓ)(|ck|+
|com|+ |r′|) by recursive application of the compiler as follows: let Π1 = Π and
for n > 1 let Π2n be the outcome of applying the compiler from Theorem 5 with
ℓ= 2 to Πn. Note that Πℓ only applies the stacking compiler ⌈log(ℓ)⌉ times and that
CC(Π2n) = CC(Πn)+ |ck|+ |com|+ |r′|. Therefore CC(Πℓ) = CC(Π)+2log(ℓ)(|ck|+
|com|+ |r′|).
Computational Complexity. In general, the computation complexity of this protocol
is ℓ times that of Π. However, in many protocols, the simulator is much faster than
computing an honest transcript. We note that for such protocols, our compiler is
expected to also get savings in the computation complexity.

Self Stacking for Instances in Multiple Languages

Many known constructions of Σ-protocols work for more than one language. For in-
stance, most MPC-in-the-head style Σ-protocols (e.g. KKW [KKW18] , Ligero [AHIV17])
can support all languages with a polynomial sized relation circuit, as long as the un-
derlying MPC protocol works for any polynomial sized function. However, because Σ-
protocols are defined w.r.t. a particular NP language/relation, instantiating [KKW18]
for two different NP languages L1 and L2 will (by definition) result in two distinct
Σ-protocols. Therefore, applied naïvely, our compiler could only be used to stack
Σ-protocols from [KKW18] for the exact same relation circuit.

We note that this seemingly artificial restriction can be relaxed and in many cases,
allowing our compiler to stack Σ-protocols based on a particular technique for clauses
of the form (x1 ∈ L1)∨ (x2 ∈ L2)∨ . . .∨ (xℓ ∈ Lℓ). By “Σ-protocols based on a
particular technique”, we mean (for instance) protocols based on [KKW18]. This can
be done by working with a “meta-language” that covers all languages of interest and
is supported by that technique. This could for example be an NP complete language,
which would allow us to use our self-stacking compiler by first reducing each xi to an
instance of the NP-complete language. However, reducing to NP complete languages
without care will often add the significant cost of performing an NP-reduction to the
complexity of our compiler, which may no longer be efficient. In many cases, it is
often possible to find the “most suitable” meta-language without compromising on
the efficiency. For instance, for any MPC-in-the-head style Σ-protocol, this meta-
language is as simple as circuit satisfiability for circuits of a given size (where this
size is determined based on the language with the largest relation circuit). This can be
easily achieved with the help of padding, without incurring any additional overhead.
This observation combined with the fact that simulation is deterministic in both KKW
and Ligero, we get a protocol for general disjunctions, where the communication is

4.8. CROSS-STACKING: DISJUNCTIONS WITH DIFFERENT PROTOCOLS 73

the same as the communication for a single instance for the clause with the largest
relation circuit and additive factor that depends on log(ℓ) and the security parameter.

4.8 Cross-Stacking: Disjunctions with Different Protocols

In the previous section, we presented a compiler that facilitated stacking of the same
Σ-protocol. We now extend these ideas to allow stacking of different Σ-protocols, i.e.
statements of the form (x1 ∈L1)∨ (x2 ∈L2)∨ . . .∨ (xℓ ∈Lℓ). This allows picking
the “best” Σ-protocol for each clause and getting stacking as an afterthought. Note
that we saw a limited version of achieving this in Section 4.7, where the Σ-protocols
all shared the same techniques, using the meta-language approach. However, that idea
crucially relied on the fact that there exists such a meta-language that is also supported
by the Σ-protocol technique that we want to stack. To avoid this requirement, we now
consider the more complex case where the Σ-protocols rely on different techniques.18

For instance, we explore how to stack Ligero-based [AHIV17] Σ-protocols with
KKW-based [KKW18] Σ-protocols despite their dissimilarity. We build intuition
while exploring barriers in an incremental manner below before finally making precise
the notion of cross-stacking.

Cross Simulatability

As discussed above, the simplest intuitive example of cross-stacking is one where
for each challenge c, multiple Σ-protocols share the same distribution over last round
messages D

(z)
c . This is most clear when the Σ-protocols are derived from the same

techniques. In this case, the techniques from the self-stacking compiler can be
used directly. In Section 4.7 we used the “meta-language” approach for KKW-
based [KKW18] Σ-protocols. We now consider another example using Schnorr-like
protocols that does not require us to work with a meta-language:

Example 1 (Preimages of homomorphisms with the same domain [CD98]) Recall
the protocol Πψ of Cramer and Damgård described earlier. Any two instances of
Πψ1 and Πψ2 for one-way homomorphisms ψ1 : G∗1→ G∗2 and ψ2 : G∗1→ G∗3 with
the same domain G∗1 can be stacked as through they were the same protocol using
the self-stacking compiler: recall that for both Πψ1 and Πψ2 , D

(z)
c is the uniform

distribution over G∗1. Concrete examples include generalizations of the Chaum-
Pedersen [CP93] Σ-protocol ΠDlogEq,ℓ (shown in Figure 4.6), for showing equality of
discrete log: for any (ℓ,g1, . . . ,gℓ) the homomorphism ψg1,...,gℓ : Z|G|→ Gℓ defined
as ψg1,...,gℓ(w) := (gw

1 , . . . ,g
w
ℓ), has the same domain Z|G| (different ranges).

18We note that this distinction between self-stacking and cross-stacking is not a firm, technical one,
but rather a conceptual difference. Taking the meta-language approach described in Section 4.7 to
stacking Σ-protocols based on differing techniques naturally leads to the question of how well transcripts
with differing structures and distributions can be re-used. We highlight these questions in this section
under the name cross-stacking.

74
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

ΠDlogEq,ℓ: RG,g1,...,gℓ(x,w) :=
∧

i∈[ℓ] xi
?
= gw

i where (g1, . . . ,gℓ) ∈Gℓ

P V

r $←− Z|G|

a← (gr
1, . . . ,g

r
ℓ)

a

c c $←− Z|G|

z← cw+ r z

Check ∀i ∈ [ℓ] : gz
i

?
= aixc

i

Figure 4.6: Generalized Chaum-Pedersen

It is easy to see that the self-stacking compiler can be extended to different
Σ-protocols that are essentially the same and explicitly share third round message
distributions. However, there are many protocols that may appear to have different
third round distributions that can still be directly stacked. This is possible when
structured distributions have their structure removed, leaving behind a “bunch of bits”
that can be re-interpreted in different ways. For example:

Example 2 (KKW over different commutative rings) Consider two KKW-based
Σ-protocols. Π1 is for a language with a relation circuit defined over the ring F2k ,
while Π2 is for a language with relation circuit over Z2k . If elements of both F2k

and Z2k are encoded as k-bit strings and the multiplicative complexity of the relation
circuits are the same, the the bit-wise distribution of D

(z)
c for Π1 and Π2 is the same

(see Figure 4.14). Therefore, Π1 and Π2 can be stacked as though they were the
same protocol using the self-stacking compiler and their extended simulators will
re-use the bit-wise encodings of elements of one ring as though they were bit-wise
encodings of the other ring. This approach can be generalized to any pair of finite
commutative rings R1,R2 st. the size of the rings differs by a constant multiplicative
factor and the circuits are of the correct size. Specifically, if there exist a constant k
such that |R1|= k|R2| and the relation circuits are arithmetic circuits over R1 and R2
with multiplicative complexity m and k ·m respectively.

Finally, we extend our ideas to stacking Σ-protocols with truly distinct D
(z)
c . As

re-use of third round messages is fundamental to our approach, the question becomes–
to what extent can the prover safely re-use the third round messages of different
Σ-protocols? In general, there are two considerations; some Σ-protocols may have
uniquely long third round messages, letting the verifier identify which Σ-protocol was
run honestly, and in some Σ-protocols, the third round messages may “not be long

4.8. CROSS-STACKING: DISJUNCTIONS WITH DIFFERENT PROTOCOLS 75

enough” to facilitate re-use. Conceptually, these two problems have the same fix: add
bits to the third round messages of each Σ-protocol until their third-round message
distributions are the same. The hope is that the number of bits shared by the third
round message distributions of these protocols is large, so only a few bits need to be
added.

We formalize this notion by considering a common “super distribution” D into
which the third round messages of each Σ-protocol can be embedded and from which
third round message for each Σ-protocol can be extracted. D represent the composite
of the distributions of the third round messages of the Σ-protocols — parts of the
distributions that can be re-used need not be duplicated, but elements unique to any
given Σ-protocol are also included. We formalize the mapping between the distribution
of third round messages and the super distribution D using a (possibly randomized)
embedding function FΣ→D and a deterministic extraction function TExtD→Π. For
example, FΠ→D may add randomly sampled bits or cryptographic material to a third
round message z in order to create an element d ∈D . TExtD→Π might simply “select”
the appropriate bits from d to construct z. We note that D is independent of c and
therefore needs to cover all possible values of c. Thus, if D

(z)
c varies wildly across c

for one of the Σ-protocols, D will need to be large. This, however, is not common
in practice; for example, D

(z)
c is the same across all values of c for both KKW and

Ligero. We now present the property that we will require for cross-stacking:

Definition 12 (Cross Simulatability) A stackable Σ-protocol Π = (A,Z,φ) is ‘cross
simulatable’ w.r.t. a distribution D if there exists a PPT algorithm FΠ→D : D

(z)
c →

D and a deterministic polynomial time algorithm TExtD→Π : {0,1}κ ×D → D
(z)
c

satisfying the following properties:

Indistinguishable Embedding: For all c ∈ {0,1}κ :

D ≈
{

d | r $←− {0,1}λ ;z $←−D
(z)
c ;d← FΠ→D(z;r)

}
Invertability: For all c ∈ {0,1}κ , z ∈D

(z)
c and r ∈ {0,1}λ :

TExtD→Π(c,FΠ→D(z;r)) = z

We note that these two properties also directly imply that for all c ∈ {0,1}κ ,

D
(z)
c ≈

{
z | d $←−D ;z← TExtD→Π(c,d)

}

This property guarantees that third round messages in a Σ-protocol can be embedded
into the (possibly larger) distribution D , a generalization of Definition 8. Note that
every stackable Σ-protocol is cross simulatable with its own third round message
distribution. To make this property useful, we will require that a set of Σ-protocols

76
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

are all cross simulatable with the same distribution D . This property can be trivially
satisfied by simply appending the distributions of the underlying stackable Σ-protocols,
making D a tuple of elements of the underlying distributions; the challenge is to find
small D for which this property holds.

With this definition in hand, we now show how Σ-protocols with very distinct
features can be made cross simulatable with a distribution D that is very similar in size
to the distributions over third round messages of these protocols using the example
of KKW [KKW18] and Ligero [AHIV17]. This is despite the very distinct features
of the two techniques: Ligero has negligible soundness error, players equal to the
square-root of the multiplicative complexity of the circuit, and requires a sufficiently
large field. KKW, on the other hand, has constant soundness that must be amplified, a
constant number of players (independent of the circuit size), and operates over any
commutative ring.

Example 3 Consider a Ligero-based Σ-protocol Π1 for a language with a relation
circuit of size C1 defined over the field F2k . Additionally, consider a KKW-based
Σ-protocol Π2 for a language with relation circuit with multiplicative complexity C2
defined over the ring Z2k .

Recall that third round message in Ligero contain (1) commitments ci to the
unopened players, and (2) a

√
C1 sized set of field elements for each opened party

(that are used for consistency checks). In KKW, third round messages contain (1) a
punctured PRF seed that allows the verifier to check the preprocessing for correctness,
(2) for each of the online phases that are opened, (a) a seed for each opened player,
(b) a O(C2) set of bits to “correct” the preprocessing for one of the players, and (c)
the broadcast messages of the unopened player (also of size O(C2)). Let D be of the
form

D = {(c1, . . . ,cN ,B) | ∀i ∈ [N] : ci← com(ε;ri),r
$←− {0,1}λ ,B $←− {0,1}L}

for some arbitrary values ε and values N and L constants that depend on C1 and C2
and the choice of concrete parameters for the instantiated Σ-protocols.

Both third round messages contain a large number of commitments that are never
opened for the unopened parties. These can simply be re-used in D; Additionally,
both protocols contain large sets of pseudorandom-looking bits: in Ligero, these take
the form of field elements and in KKW these take the form of correction bits, broadcast
messages, and a punctured PRF seed. Because these elements come from the same
underlying bit-wise distribution, they can similarly be reused. However, the number of
commitments and pseudorandom bits in each protocol may differ. As such, D contains
the maximum number of commitments and pseudorandom bits from between the two
protocols.

Mapping into D involves determining the size of the padding: if more commitments
must be added, the mapping function samples arbitrary values ε and commits to them
honestly. Note that these commitments will never be opened, so the contents do not
matter. If more pseudorandom bits are required, the mapping function samples the

4.9. k-OUT-OF-ℓ PROOFS OF PARTIAL KNOWLEDGE 77

required number of bits. Extracting a third round function involves selecting the
appropriate number of commitments and pseudorandom bits and parsing these bits as
needed. Note that if the sizes of C1 and C2 are appropriate (

√
C1 ≈C2×(number of

repetitions)), very little padding will be needed.

Cross-Stacking from Cross Simulatability

With the definition of cross simulatability now in hand, we present our cross-stacking
compiler. The approach is the same as the self-stacking compiler, but for a set of
Σ-protocols cross simulatable with respect to the same D .

Theorem 6 (Cross-Stacking) Let D be a distribution. For each i ∈ [ℓ], let Πi =
(Ai,Zi,φi) be a stackable (See Definition 9) Σ-protocol for the NP relation Ri :
Xi ×Wi → {0,1}, that is cross simulatable w.r.t. to a distribution D , and let
(Setup,Gen,EquivCom,Equiv) be a 1-out-of-ℓ binding vector commitment scheme
(See Definition 4). For any pp← Setup(1λ), the protocol Π′ = (A′,Z′,φ ′) described
in Figure 4.7 is a stackable Σ-protocol for the relation R ′((x1, . . . ,xℓ),(α,w)) :=
Rα(xα ,w).

We give a proof of this theorem in Section 4.13.

Complexity Analysis. Complexity of this protocol can be calculated in a similar
manner as in the self-stacking compiler, except that here the distribution will depend
on size of elements in D (let this be |xD |). Thus, the communication complex-
ity of Π′ is (|xD |+ ℓO(λ) + |com|+ |r′|). The impact of choosing any particular
partially-binding vector commitment scheme remains the same. As before, the above
compiler can be optimized further, to yield a protocol with communication complexity
(|xD |+2log(ℓ)O(λ)+ |com|+ |r′|), where O(λ) can be minimized by using efficient
constructions of partially-binding vector commitments, as shown in the complexity
analysis of self-stacking.

4.9 k-out-of-ℓ Proofs of Partial Knowledge

We now briefly sketch how to efficiently (and generically) generalize the 1-of-ℓ
technique in this paper to k-of-ℓ threshold proofs with communication complexity
linear in k and logarithmic in ℓ. We note that the previous version of our paper
had a different version of this construction where the communication complexity
was linear in both k and ℓ, which is not optimal. In a follow-up work, Avitabile et
al. [ABFV22] proposed an optimized construction for proofs of partial knowledge
where the communication is linear in k and logarithmic in ℓ. Their work inspired
us to observe a much simpler variant of our previous construction that also has a
similar efficiency, which we discuss in this section. For reference, we include our
old construction (with non-optimal communication) from the previous version of this
paper in ??.

78
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

A naïve attempt at turning a 1-of-ℓ proof into a threshold k-of-ℓ proof is to simply
execute the 1-of-ℓ proof k times in parallel, this however is not sound: a cheating
prover knowing just a single witness can simply prove satisfiability of the same clause
in every execution. This can be avoided by forcing the prover to use a unique "tag"
for every clause. Let H be a family of k universal hash functions H : [ℓ]→D with
|D | ≥ k, at a high-level the construction proceeds as follows:

1. Prover samples a k-universal hash function H $←−H subject to |{H(α)}α∈A |=
k.

2. Prover commits to the function: com← Commit(H;r).

3. The prover sends com, t1 = H(α1), . . . , tk = H(αk) to the verifier and for every
i ∈ [k] proves:

(com= Commit(H;r)∧ ti = H(1)∧ (x1,w) ∈R1)

∨(com= Commit(H;r)∧ ti = H(2)∧ (x2,w) ∈R2)

∨(com= Commit(H;r)∧ ti = H(3)∧ (x3,w) ∈R3)

∨ . . .
∨(com= Commit(H;r)∧ ti = H(ℓ)∧ (xℓ,w) ∈Rℓ)

Using the disjunction technique (e.g. the technique covered in this paper). In
addition to checking the validity of each proof the verifier now additionally
checks that every ti is distinct.

Note that the compiler does not increase round-complexity as com, t1, . . . , tk can be
send in parallel with the disjunction proof. Soundness follows from the soundness
of the 1-of-ℓ proof and the binding of the commitment scheme: intuitively if a
malicious prover attempts to prove the same clause αi multiple times then H(αi)
must be appear multiple times, otherwise the malicious prover would be able to
open com to a commitment to H and H ′ where H(αi) ̸= H ′(αi) and hence H ̸=
H ′ which violates binding of the commitment. The precise soundness definition
perfect/statistical/computational is inherited directly from the commitment scheme
and proof system. Intuitively the proof above is zero-knowledge since for any set
of t1, . . . , tk ∈ D : Pr

H
$←−H

[t1 = H(α1), . . . , tk = H(αk)] is independent of α by the
definition of k universality by combining this with hiding of the commitment scheme
and zero-knowledge the disjunction proof: the simulator works by setting ∀i ∈ [k] :
αi = i, sampling H like the honest prover, then running the simulator of the disjunction
proof for every i.

The primary challenge in the compiler above is to instantiate Commit and H
such that com = Commit(H;r)∧ ti = H(i) can be efficiently proven using a Sigma
protocol. We instantiate Commit using a scheme which enables commitment to
polynomials of degree k−1 (a family of k-universal hash functions), note that we do
not require a ‘polynomial commitment scheme’ as commonly defined: in particular

4.10. MEASURING CONCRETE EFFICIENCY 79

we do not require that |com| is succinct or the opening proofs have poly-logarithmic
time/communication in the degree of the polynomial. The scheme is a natural one
based on a linearly homomorphic commitment scheme:

1. The prover commits to H(X) = ∑
k
i=1 ci ·X i−1 by committing to each coefficient

individually, for all i ∈ 1, . . . ,k commit to ci using a homomorphic commitment
[ci]← CommitHomo(ci;ri) and form com= ([c1], . . . , [ck]).

2. To open H at x, both parties homomorphically compute [H(x)] = ∑
k
i=1 xi · [ck]

3. The prover applies a zero-knowledge proof to show that [H(x)] opens to y,
without revealing the randomness of the commitment.

For completeness, the linearly homomorphic commitment scheme can be in-
stanced with Pedersen commitments and the (honest-verifier) zero-knowledge proof
with a generalization of a Schnorr proof to prove the opening of the Pedersen commit-
ment; as shown earlier such a proof is stackable.

4.10 Measuring Concrete Efficiency

Although the efficiency of our compiler is self evident from the construction of
the commitment scheme, we also include two measurements to demonstrate the
efficiency more clearly. Specifically, we compare the impact of applying our self-
stacking compiler to instance instances of the KKW Σ-protocol and constructing ring
signatures by applying our self-stacking compiler to Schnorr signatures.

Self-Stacking KKW [KKW18]. Our first measurement that demonstrates the con-
crete efficiency of our compiler is self-stacking KKW [KKW18]. We compare the
results of this protocol to the naïve approach of simply applying CDS [CDS94] to the
equivalent disjunctive statement. Specifically, we compare our compiler and CDS
applied applied to circuits containing 1000 and 100,000 multiplication gates and
sweep between 1 and 1000 clauses. The results of this comparison can be found in
Figure 4.8.

To compute this table, we compute the communication complexity of KKW
for 128-bits (λ = 128) of classical (non-quantum) security. The communication
complexity for ℓ clauses for our work and CDS are computed as follows:

Size-KKW = 2λ + τ · log
M
τ
·3λ + τ(λ logn+2m+ |w|+3λ),

Size-Stacked = Size-KKW+4λ · ⌈logℓ⌉,
Size-CDS = ℓ · (Size-KKW+λ),

where Size-KKW and parameters (M,τ) are derived in KKW [KKW18].

Ring-signatures From Schnorr Signatures [Sch90]. Our second efficiency measur-
ment is constructing ring-signatures [RST01] by applying our compiler to classical

80
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Schnorr Signatures. Specifically, we recursively apply the compiler from Theo-
rem 5 (with the partially binding vector commitments from Figure 4.16), to the
Schnorr [Sch90] identification protocol over the Ristretto group of Curve25519 [Ber06].
Then, we apply the Fiat-Shamir [FS87] heuristic to obtain a signature of knowl-
edge in the random oracle model. We implement the compiled protocol in the
Rust programming language; our implementation is open source and is available at
https://github.com/rot256/research-stacksig .

The concrete size of these ring signatures with 128 bits of security and n parties
is |σ |= 64 · ⌈log2(n)⌉+64 bytes. We present running times and signatures sizes for
these ring signatures in Figure 4.9.19

Acknowledgments

We would like to thank the anonymous reviewers of CRYPTO 2021 for their helpful
comments on our initial construction of the partially-binding commitments. Addi-
tionally, we would like to thank Nicholas Spooner for his helpful comments on the
definition of these commitments. Finally, we would like to thank Gennaro Avitabile,
Vincenzo Botta, Daniele Friolo and Ivan Visconti, who in their follow-up work “Ef-
ficient Proofs of Knowledge for Threshold Relations”[ABFV22] pointed out some
subtle definitional issues in the previous version of this paper and constructed an
optimized threshold version of our compiler. This motivated us to observe a different
(and improved) variant of our threshold construction, which we describe in this up-
dated version. Additionally, we have updated the definition of hiding based on their
observations.

The first and second authors are supported in part by NSF under awards CNS-
1653110, and CNS-1801479, and the Office of Naval Research under contract N00014-
19-1-2292. The first author is also supported in part by NSF CNS grant 1814919, NSF
CAREER award 1942789 and the Johns Hopkins University Catalyst award. The sec-
ond author is also funded by DARPA under Contract No. HR001120C0084, as well as
a Security and Privacy research award from Google. The third author is funded by Con-
cordium Blockhain Research Center, Aarhus University, Denmark. The forth author
is supported by the National Science Foundation under Grant #2030859 to the Com-
puting Research Association for the CIFellows Project and is supported by DARPA
under Agreements No. HR00112020021 and Agreements No. HR001120C0084. Any
opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the United States
Government or DARPA.

Definition 13 (Discrete Log Assumption) There exists a PPT algorithm GenGroup(1λ)
which returns a description of a prime-order cyclic group G (written multiplicatively)

19The benchmarks can be reproduced by running cargo bench using a nightly Rust.

https://github.com/rot256/research-stacksig

4.10. MEASURING CONCRETE EFFICIENCY 81

which admits efficient sampling, st. for all PPT algorithms A :

Pr
[
A (1λ ,G,g,h) = y | G← GenGroup(1λ);h $←−G;y $←− Z|G|;g← hy

]
= negl(λ)

For some negligible function negl(λ).

Proof 7 (Theorem 1) Completeness of partial equivocation for the scheme in Figure
4.2 is easily seen (follows from equivocation of Pedersen commitments), so we focus
on computational binding and perfect hiding.

Computational Binding Let Ak be a PPT algorithm winning the binding game with
probability ε i.e.

ε = Pr

[
∄S⊂ [ℓ], |S| ≥ t, s.t. i ∈ S,v1,i = . . .= vk,i ∧

BindCom(pp,ck,v1;r1) = . . .= BindCom(pp,ck,vk;rk)∣∣∣∣∣ pp← Setup(1λ);

(ck,v1, . . . ,vk,r1, . . . ,rk)←Ak(1λ ,pp)

]

Then the PPT algorithm A ′ shown in Figure 4.10 wins the discrete log game
(computing y0 st. g0 = hy0) with probability ≥ ε . To see this observe that,
when Ak wins the binding game: it follows that there exists a set S such that its
complement S has size |S| ≥ ℓ−t+1 and since ∀α,β ∈ [k] : (com1, . . . ,comℓ)=
BindCom(pp,ck,v(α)) = BindCom(pp,ck,v(β)) ∈Gℓ, we can extract yi ∈ Z|G|
st. gi = hyi whenever v(α)

i ̸= v(β)i by observing:

gv(α)
i

i hr(α)
i = comi = gv(β)i

i hr(β)i

gv(β)i − v(α)
i

i = hr(α)
i − r(β)i

gi = hyi = h(r
(α)
i − r(β)i)/(v(β)i − v(α)

i)

Consider X ⊆ℓ−t+1 S defined as in A ′, let fX (X) := ∑i∈X yi ·L(X ,i)(X) ∈
Z|G|[X]. Consider f[ℓ−t]∪{0}(X) := ∑i∈[ℓ−t]∪{0} yi · L([ℓ−t]∪{0},i)(X) defined by
the unique y0,y1, . . . ,yℓ−t ∈ Z|G| with g0 = hy0 , . . . ,g1 = hy1 , . . . ,gℓ−t = hyℓ−t

where ck = (g1, . . . ,gℓ−t). Observe that ∀ j ∈X : fX (j) = f[ℓ]∪{0}(j) hence
fX = f[ℓ−t]∪{0} since both are degree ℓ− t < |X | polynomials. Therefore
the algorithm recovers fX (0) = f[ℓ]∪{0}(0) = ∑i∈X yi · L(X ,i)(0) = y0, with
g0 = hy0 , by definition of f[ℓ]∪{0}. Note that the security reduction is tight.

Perfect Hiding Recall that we denote the set of binding indexes as B, and its com-
plement (the set of indexes that support equivocation) as E. Observe that for
any E the distribution of ck = (g1, . . . ,g[ℓ]−t) is uniform in Gℓ−t: since the
distribution of {g j} j∈E is uniform and {g j} j∈[ℓ−t] is computed as a bijection
of {g j} j∈E . Hence the distribution of ck is independent of E (and B), and the

82
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

binding indexes are perfectly hidden. The perfect hiding of the commitment
(com1, . . . ,comℓ) follows directly from perfect hiding of Pedersen commitments:
each comi is sampled i.i.d. uniform from G. Finally, note that r is distributed
uniformly in Zℓ

|G|, both when committing using BindCom and equivocating with
EquivCom.

4.11 Blum87 is Stackable: Proof of Lemma 2

Let L Ham
n ⊆ {0,1}n×n be the language of n vertex graphs with a Hamiltonian cycle

(represented by adjacency matrices). For any n Blum’s classical Σ-protocol for L Ham
n

is stackable, recall the protocol (Shown in Figure 4.11):

On challenge c = 0: P sends the randomness for the commitment to the permuted
graph. The verifier then recomputes the commitments and checks them against
the first round message. Hence for c = 0 the last round message consists of a
uniformly random permutation π ∈ Sn and ({0,1}λ)n2

random bits, independent
of the graph (statement).

On challenge c = 1: P sends the opening of the permuted Hamiltonian cycle (wit-
ness) to V. Hence for c = 1 the last round message z is a uniformly random
permutation τ ∈ Sn and ({0,1}λ)n random bits, independent of the graph (state-
ment).

Therefore the protocol has recyclable third messages. To be more precise:

Proof 8 (Lemma 2) For c ∈ {0,1}, define D
(z)
c as follows:

D
(z)
0 := {(π,r1,1, . . . ,rn,n) | π

$←− Sn;∀i, j ∈ [n] : ri, j
$←− {0,1}λ}

D
(z)
1 := {(τ,r1,τ(1), . . . ,rn,τ(n),C1,1, . . . ,Cn,n) | τ

$←− Sn;∀i, j∈ [n] : ri, j
$←−{0,1}λ ,Ci, j←Commit(1;ri, j)}

Construct the extended simulator S EHVZK as follows:

S EHVZK(x,c= 0,(π,r1,1, . . . ,rn,n))= (C1,1, . . . ,Cn,n) where ∀i, j∈ [n] :Ci, j←Commit(xi, j;ri, j)

S EHVZK(x,c = 1,(τ,r1,τ(1), . . . ,rn,τ(n),C1,1, . . . ,Cn,n)) = (C1,1, . . . ,Cn,n)

Observe that the distribution for c = 0 is the same as honest execution. For c = 1 the
distributions are indistinguishable by hiding of the bit-commitment, see [Blu87] for
details. The protocol is clearly EHVZK – since it is a special case of a commit-and-
reveal protocol.

4.12. WELL-BEHAVED SIMULATORS: PROOF OF LEMMA 5 83

4.12 Well-Behaved Simulators: Proof of Lemma 5

Proof 9 Given Π = (A,Z,φ), construct the new Π′ = (A′,Z′,φ ′) with well-behaved a
simulator as follows:

• A′(x,w;r) := (a,⊥) where a← A(x,w;r)

• Z′(x,w,c;r) := z where z← Z(x,w,c;r)

• φ ′(x,a′,c,z) :=

1. if a′ = (⊥,c) output 1.

2. if a′ = (a,⊥) for some a, output φ(x,a,c,z).

3. Otherwise output 0

Intuitively: in Π′ the prover can either choose to attempt guessing the challenge c
(sending a′ = (⊥,c)), or, he can run the original protocol (sending a′ = (a,⊥)). The
(well-behaved) simulator S ′ of Π′ first runs the simulator S of Π, if the simulated
transcript (a,c,z) is accepting then output the transcript, otherwise S ′ ‘guesses’ the
challenge:

• S (1λ ,x,c) :=

1. (a,z)←S (1λ ,x,c)

2. if φ(a,c,z) = 1 output (a′,z′) where a′ = (a,⊥), z′ = z.

3. if φ(a,c,z) = 0 output (a′,z′) where a′ = (⊥,c), z′ =⊥

Π′ is a Σ-protocol: Formally verify the defining qualities of a Σ-protocol:

• Completeness: follows from completeness of Π. In particular in the real
executions a′ = (a,⊥) always.

• Special Honest Verifier Zero-Knowledge: For every x ∈L and c ∈ {0,1}λ , the
output of the original simulator (a,z)←S (1λ ,x,c) must always be accepting
φ(a,c,z)= 1 by SHVZK of Π. Hence the distribution of S ′ on statements x∈L
is Since the distribution in the real execution will always have a′ = (a,⊥)

• Special Soundness: Suppose we get two transcripts with a shared first-round
message: (a′,c1,z1,c2,z2) st. φ ′(a′,c1,z1) = 1, φ(a′,c2,z2) = 1 and c′1 = c′2.
Consider the two distinct forms that a′ can take:

1. When a′ = (⊥,c) then clearly there does not exists two accepting tran-
scripts with different challenges c1 and c2 since c = c1 = c2. Hence the
assumption that a′ = (⊥,c) is a contradiction.

2. When a′ = (a,⊥) then z1,z2 must satisy φ(a,c1,z1) = 1 and φ(a,c2,z2) =
1. Therefore, we can extract a witness w← E (a,c1,z1,c2,z2) using the
extractor of Π.

84
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Π is EHVZK =⇒ Π′ is EHVZK: Let S EHVZK be the extended simulator of Π, for
every x define D

(z)
c,x
′
= D

(z)
c,x and the new extended simulator S EHVZK ′ of Π′ as:

• S EHVZK ′(1λ ,x,c,z) :=

1. a←S EHVZK(1λ ,x,c,z)

2. if φ(x,a,c,z) = 1 : output (a,⊥)
3. if φ(x,a,c,z) = 0 : output (⊥,c)

Π has recyclable third messages =⇒ Π′ has recyclable third messages: Let
D

(z)
c
′
= D

(z)
c , since D

(z)
c,x
′
= D

(z)
c,x for every x, it follows immediately.

4.13 Security Proof for Cross-Stacking Compiler (Theorem
6)

We now prove that the protocol Π′ = (A′,Z′,φ ′) described in Figure 4.7 is a stackable
Σ-protocol for the relation R ′((x1, . . . ,xℓ),(α,w)) := Ri(xα ,w).

Completeness. Completeness follows directly from the completeness of the under-
lying Σ-protocols, completeness of the commitment scheme. Note that because the
underlying Σ-protocol has a well-behaved simulator, the prover will not produce
non-accepting transcripts on any clauses embedding false instances.

Special Soundness. We create an extractor E ′ for the protocol Π′ using the extractors
Ei for the underlying Σ-protocols Πi. The extractor E ′ is given two accepting tran-
scripts for the protocol Π′ that share a first round message, i.e. a,c,z,c′,z′. The extrac-
tor uses this input to recover 2ℓ total transcripts (2 for each branch), (ai,c,zi),(a′i,c

′,z′i)
for i ∈ [ℓ]. By the binding and verification properties of the equivocal vector com-
mitment scheme, with all but negligible probability there exists an α ∈ [ℓ] such
that aα = a′α . E ′ then invokes the extractor of Πα on these transcripts to recover
w← Eα(1λ ,xα ,aα ,cα ,zα ,c′α ,z

′
α) and returns (α,w). Because the underlying extrac-

tor Eα cannot fail with non-negligible probability, the E ′ succeeds with overwhelming
probability.

Extended Honest-Verifier Zero-Knowledge (and Recyclable Third Messages).
We denote the distribution of third round message for Π′ as D

(z)
c
′
. Note that D

(z)
c
′
is

constructed from a commitment key ck, a randomness for the commitment scheme
r, and a single element d ∈D . Note that by the hiding property of the commitment
scheme, the distribution of ck is independent of the binding index B. More formally,
for pp← Setup(1λ),

D
(z)
c
′
:= {(ck,r,d) | (ck,ek)← Gen(pp,B = {1});r $←− {0,1}λ ;d $←−D}

Note that this distribution is independent of the statements, as D itself is independent
of the statements.

4.14. OVERVIEW OF [KKW18] AND PROOF OF ?? 85

We construct the extended simulator by running the underlying extended simu-
lating S EHVZK for every clause and committing to the tuple of first round message
(a1, . . . ,aℓ) using a freshly generated commitment key ck and randomness r:

a′←S EHVZK ′((x1, . . . ,xℓ),c,z′ = (ck,r,d))

1 : for i ∈ [ℓ]

2 : Compute zi← TExti(c,d)

3 : Compute ai←S EHVZK
i (xi,c,zi)

4 : return (ck,BindCom(ck,v = (a1, . . . ,aℓ);r))

Let D (α,w) denote the distribution of transcripts resulting from an honest prover
possessing witness (α,w) running Π′ with an honest verifier on the statement (x1, . . . ,xℓ),
where D (α,w) is over the randomness of the prover and the verifier. We now proceed
using a hybrid argument. Let H (α) be the same as D (α,w), except let the first
round message of clause α be generated by simulation, i.e. zα ← TExtα(c,d);aα ←
S EHVZK(xα ,c,zα). By the EHVZK of Σα , H (α) ≈ D (α,w). Next, let H (α,ck) be
the same as H (α) except let the commitment key ck be generated with the binding
position as B = {1}, i.e. (ck,ek)←Gen(pp,B = {1}). Observe that H (α,ck) p=H (α)

by the (perfect) hiding of the partially-binding commitment scheme. Lastly note that
H (α,ck) matches the output distribution of S EHVZK ′((x1, . . . ,xℓ),c,D

(z)
c
′
).

Therefore Σ′ is a stackable Σ-protocol.

4.14 Overview of [KKW18] and Proof of Lemma 3

In this section we describe the MPC-in-the-head protocol by Katz, Kolesnikov
and Wang (KKW) [KKW18]. Let R be a finite commutative ring and m ∈ N+,
KKW[KKW18] (parameterized by R and m) is a Σ-protocol for the NP relation
R(C,w) :=C(w) = 1 of circuits C over R and satifying assignments of input wires w.
The protocol is obtain by compiling a passively secure BGW-style [BGW88] MPC
protocol in the preprocessing model using the IKOS[IKOS07] compiler.

Notation. We denote by v $←−s D (notice s), the process of sampling v from the
distribution D using random coins r← PRG(s) derived by applying a pseudo-random

generator on the seed s. The operation is stateful i.e. v1
$←−s D ;v2

$←−s D samples
two (possibly distinct) values from D using disjoint slices of the pseudo-random
stream. We denote by [v](i) the additive share of v held by player Pi, the shares of
all players sum to v: v = ∑

n
i=1 [v]

(i). The function f to be computed by the MPC
protocol is implemented as an arithmetic circuit over R and the function is interpreted
as a sequence of gates f = (f1, . . . , f| f |) ∈ {Input,Add,Mul,Output}| f | (in-order
traversal of the circuit) where:

• Input(γ): assigns to the next R-element from the witness to the wire wγ .

86
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

• Add(γ,α,β): assigns to the wire wγ the sum of the values of the wires wα and
wβ .

• Mul(γ,α,β): assigns to the wire wγ the product of the values of the wires wα

and wβ .

• Output(α): outputs/reveals the value of the wire wα .

Underlying MPC. It is most clearly seen how preprocessing as used in KKW fits
into our framework by simply viewing the MPC as an n+1 player protocol, where
a ‘preprocessing player’ P0 acts as a dealer (shown in Figure 4.12) and sends the
‘online players’ P1, . . . ,Pn correlated randomness via point-to-point channels. The
MPC is passively secure against the corruption patterns C = {{0}∪

(
[n]

n−1

)
} i.e. the

‘preprocessing player’ or any n−1 subset of the ‘online players’. During the online
phase of KKW (shown in Figure 4.13) the n players hold additive shares [λγ]

(i) of
masks λγ = ∑

n
i=1 [λγ]

(i) and public maskings zγ = vγ −λγ of the value vγ assigned to
the wγ , i.e. the value of wγ is vγ = zγ +∑

n
i=1 [λγ]

(i).

The n online players share a single broadcast channel (no point-to-point channels).
The initial state of the online players consists of the masked values zγ for the input
gates sent to the players on the broadcast channel. The initial state of the preprocessing
player P0 consists only of random coins. Player 0 can be opened by providing her
random coins, any subset of the n online players can be opened by providing the
messages from player 0 to these players in addition to the messages broadcast during
the online execution by the unopened players.

When applying the IKOS [IKOS07] compiler to this n+1 player MPC protocol, it
results in the 3-round (Σ-protocol) variant of the KKW proof system described in the
original paper. The communication-complexity optimizations applied in [KKW18]
are compatible with this n+1 player interpretation, but are omitted here for the sake
of simplicity and because they are orthogonal to our goal of ‘stacking’ KKW.

Condensed Views

Condensed view of P0: The condensed view of P0 is its random coins s0 from which
the individual player seeds s1, . . . ,sn are derived. Given s0 the entire view of P0 can
be recomputed. Total of λ bits.

Condensed view of {Pi}i∈I ,0 /∈I : The condensed views of any subset of online
players consists of a tuple (T ,∆,{si}i∈I), consisting of:

1. All broadcast messages not sent by players in {Pi}i∈I :

a) The masked input wires zγ for gates Input(γ).

b) The [sγ]
(p) shares sent by player Pp, p /∈I during multiplication.

4.14. OVERVIEW OF [KKW18] AND PROOF OF ?? 87

2. The corrections ∆ sent by player 0.

3. The n−1 individual per-player PRG seeds {si}i∈I ,

Total of 2m+ |w| elements of R and λ · (n− 1) bits. Crucially, there is no need to
include the shares of the honest player for the output reconstructions:

Remark 5 We do not need to include in T the shares of Pp during the reconstruction
in the execution of Output gates: any accepting transcript will reconstruct the
constant o (‘circuit satisfied’), hence the share [λα]

(p) can be inferred from the masked
wire zα and the shares {[λα]

(i)}i∈I as: [λα]
(p) = o− zα −∑i∈I [λα]

(i).

Soundness Amplification. In KKW, communication complexity of the soundness
amplification is improved by opening the preprocessing player with significantly
higher probability. In practice this is done by picking parameters M,τ with τ ≪M
then opening P0 in M− τ randomly chosen repetitions and a random subset of ‘online
players’ in the remaining τ repetitions.

[KKW18] is Stackable: Proof of Lemma 3

We now prove that this MPC is F -universally simulatable (and therefore stackable).

Proof 10 (Lemma 3) Let D (real) be the real distribution over condensed views for a
particular I . The simulator is given in Figure 4.14. Consider the two cases:

• Preprocessing: I = {0}.
The distribution S (f ,{0}) over condensed views is exactly D (real).

• Online Execution: I ̸= {0}, |I |= n−1.
Follows in a straighforward way from the pseudorandomness of the PRG.
Consider the following three hybrids:

1. Define the hybrid H (∆):

H (∆)= {(T ,∆′, I,{si}i∈I),∆′
$←−Rm,(T ,∆, I,{si}i∈I)

$←−D (real)(I)}

Let p ∈ [n] \I be the honest (unopened) player. Note that in D (real):
∆α,β = λα j λβ j −∑i∈[i] [λα j,β j]

(i) = Cα j,β j − [λα j,β j]
(p) where Cα j,β j and

[λα j,β j]
(p) $←−sp R is known to the verifier. In H (∆): ∆′

α,β = λα j λβ j −

∑i∈[i] [λα j,β j]
(i) =Cα j,β j− [λα j,β j]

(p) where [λα j,β j]
(p) $←− R. Hence by pseu-

dorandomness of the PRG the distribution of ∆α,β and ∆′
α,β are computa-

tionally indistinguishable and by extension D (real) c≈H (∆).

88
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

2. Define the hybrid H (T):

H (T)= {(T ′,∆, I,{si}i∈I),T ′ $←−Rm+|w|,(T ,∆, I,{si}i∈I)
$←−H (T)}

Note that in D (real): [sγ]
(p) = zα [λβ]

(p)+zβ [λα]
(p)+[λα,β]

(p)− [λγ]
(p) =

S(p)
α,β − [λγ]

(p) with [λγ]
(p) $←−sp R and the verifier may know S(p)

α,β . While in

H (T): [sγ]
(p)′ $←− R. By pseudorandomness of the PRG the distribution of

[sγ]
(p) and [sγ]

(p) are computationally indistinguishable and by extension
D (real) c≈H (T).

Finally observe H (∆,T) = S (f ,I)
c≈D (real).

4.15 Overview of Ligero and Proof of Lemma 4

In this section, we discuss the MPC model used in Ligero, give an overview about why
their underlying MPC is F -universally simulatable , recall the construction of their
MPC protocol and finally give a formal proof for why their protocol is F -universally
simulatable .

MPC Model. The protocol in Ligero [AHIV17] makes use of a special MPC protocol
that is described in the following model between a sender, reciever and n servers (the
following text is taken verbatim from Ligero):

• Two-phase: The protocol they consider proceeds in two-phases: In phase 1,
the servers receive inputs from the sender and only perform local computation.
After Phase 1, the servers obtain a public random string r sampled via a coin
flipping oracle and broadcast to all servers. The servers use this in Phase 2 for
their local computation at the end of which each server sends a single output
message to the receiver R.

• No Broadcast: The servers never communicate with each other. Each server
simply receives inputs from the sender at the beginning of Phase 1, then receives
a public random string in Phase 2, and finally delivers a message to R.

Overview. Originally, Ligero is presented as a 5 round public coin proof that can
be flattened using Fiat-Shamir. In order to use a protocol in the above model with
our modified IKOS compiler (see Theorem 3), we assume that the random string r is
obtained by the sender using a random oracle by providing the list of all the messages
that it computes in the first phase as input. Given this slight modification, we observe
that the underlying MPC protocol in Ligero is F -universally simulatable . At a high
level, the messages sent by the sender to the servers at the end of the first phase in
their protocol correspond to packed secret sharings (or more generally Reed-Solomon
encodings) of the intermediate wire values obtained upon evaluating the circuit on

4.15. OVERVIEW OF LIGERO AND PROOF OF ?? 89

a given input. The messages sent by the servers to the receiver in the second phase
correspond to packed secret sharings of vectors of 0s. Since the messages sent in the
first phase are never reconstructed, our F -universal simulator, can simply simulate
these messages by sending random values to the adversarial servers on behalf of an
honest sender. These messages correspond to the condensed view of the adversary.
Messages sent by the honest servers to a corrupt receiver in the second round can be
deterministically computed using the above condensed view and the description of
the function. Hence, this protocol is F -universally simulatable .

We now describe their protocol in detail and then present a formal description of
the F -universal simulator and the functions ExpandViews and CondenseViews. But
befor that, we borrow the following definitions from [AHIV17], which will aid in the
description of the protocol.

Definition 14 (Reed-Solomon Code) For positive integers n,k, finite field F, and
a vecotr η = (η1, . . . ,ηn) ∈ Fn of distinct field elements, the code RSF,n,k,η is the
[n,k,n− k + 1] linear code over F that consists of all n-tuples (p(η1), . . . , p(ηn)),
where p is a polynomial of degree < k over F.

Definition 15 (Interleaved code) Let L ⊂ Fn be an [n,k,d] linear code over F. We
let Lm denote the [n,mk,d] (interleaved) code over Fm whose codewords are all m×n
matrices U such that every Ui of U satisfies Ui ∈ L. For U ∈ Lm and j ∈ [n], we denote
by U [j] the jth symbol (column) of U.

Definition 16 (Encoded Message) Let L=RSF,n,k,η be an RS code and ζ =(ζ1, . . . ,ζℓ)
be a sequence of distinct elements of F for ℓ≤ k. For u ∈ L, we define the message
Decζ (u) to be (pu(ζ1), . . . , pu(ζℓ)), where pu is the polynomial (of degree < k) corre-
sponding to u. For U ∈ Lm with rows u1, . . . ,um ∈ L, we let Decζ (U) be the length-mℓ
vector x = (x11, . . . ,x1ℓ, . . . ,xm1, . . . ,xmℓ) such that (xi1,...,xiℓ) = Decζ (ui) for i ∈ [m].
Finally, when ζ is clear from the context, we say that U encodes x if x = Decζ (U).

Ligero MPC protocol. Let C : Fn→ F be the circuit that the parties wish to compute.
Let α = (α1, . . . ,αn) be the input vector held by the the sender S. Let m, ℓ be integers
such that m · ℓ > n · |C|, where |C| is the number of gates in the circuit C.

In the first phase of the protocol, the sender S proceeds as follows (the following
text is taken verbatim from Ligero):

• It computes w∈Fmℓ, where the first n+s entries of w are (α1, . . . ,αn,β1, . . . ,β|C|)
where βi is the output of the ith gate when evaluating C(α).

• It then constructs vectors x,y and z in Fmℓ where the jth entry of x,y and z
contains the values βa, βb and βc corresponding to the jth multiplication gate in
w.

• It constructs matrices Px,Py and Pz in Fmℓ×mℓ such that

x = Pxw, y = Pyw, z = Pzw.

90
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

• It then constructs matrix Padd ∈ Fmℓ×mℓ such that the jth row of Paddw equals
βa +βb−βc where βa, βb and βc correspond to the jth addition gate in w.

• It then samples random codewords Uw,Ux,Uy,U z ∈ Lm where L = RSF,n,k,η
subject to w = Decζ (Uw),x = Decζ (Ux),y = Decζ (Uy),z = Decζ (U z) where
ζ = (ζ1, . . . ,ζℓ) is a sequence of distinct elements disjoint from (η1, . . . ,ηn).

• Let u′,ux,uy,uz,u0,uadd be auxiliary rows sampled randomly from L where
each of ux,uy,uz,uadd encodes an independently samples random ℓ messages
(γ1, . . . ,γℓ) subject to Σc∈[ℓ]γc = 0 and u0 encodes 0ℓ.

• It sets U ∈ L4m as a juxtaposition of the matrices Uw,Ux,Uy,U z ∈ Lm. It
also computes r∗ ← HRO(U), where r∗ = (r,radd,rx,ry,rz,rq), such that r ∈
F4m,radd,rx,ry,rz ∈ Fmℓ, rq ∈ Fm.

• It sends U [j],u′[j],ux[j],uy[j],uz[j],u0[j],uadd[j] to server j (for j ∈ [n]), where
U [j] represents the jth column in U . It also sends r∗ to each server.

In the second phase, each server j ∈ [n] computes and broadcast the following to
the receiver party R:

• Compute and send v[j] = rTU [j]+u′[j].

• – Compute constructs matrix Padd ∈ Fmℓ×mℓ such that the jth row of Paddw
equals βa +βb−βc where βa, βb and βc correspond to the jth addition
gate in w.20

– Let raddi be the unique polynomial of degree < ℓ such that raddi (ζc) =
((radd)T Padd)ic for every c ∈ [ℓ].

– Let Uw[i, j] be the (i, j)th entry in Uw.

– Compute and send qadd[j] = uadd[j]+Σi∈[m]raddi (j) ·Uw[i, j].

• It constructs matrices Px,Py and Pz in Fmℓ×mℓ such that x=Pxw,y=Pyw,z=Pzw..
For each a ∈ {x,y,z}, let ra

i be the unique polynomial of degree < ℓ such that
ra

i (ζc) = ((ra)T [Imℓ|−Pa])ic for every c ∈ [ℓ]. It then computes and sends the
following:

– qx[j] = ux[j]+Σi∈[m]rx
i (j) ·Ux[i, j]+Σ2m

i=m+1rx
i (j) ·Uw[i−m, j].

– qy[j] = uy[j]+Σi∈[m]r
y
i (j) ·Uy[i, j]+Σ2m

i=m+1ry
i (j) ·Uw[i−m, j].

– qz[j] = uz[j]+Σi∈[m]r
z
i (j) ·U z[i, j]+Σ2m

i=m+1rz
i (j) ·Uw[i−m, j].

– p0[j] = u0[j]+Σi∈[m]rq[i] · (Ux[i, j] ·Uy[i, j]−U z[i, j]).

20Note that Padd can be constructed without knowledge of w.

4.15. OVERVIEW OF LIGERO AND PROOF OF ?? 91

Ligero is Stackable: Proof of Lemma 4

We now prove that the Liegor MPC is F -universally simulatable (and therefore
stackable). Based on Ligero’s MPC model, privacy only holds when the adversary is
only allowed to corrupt the receiver R and at most t servers. The view of an adversary
corrupting the reciever R and t servers consists of the messages received by the corrupt
servers from the sender S in the first phase and in the second phase it consists of
the messages sent by all the servers to the receiver R. F -universal simulatability of
this protocol follows from the zero-knowledge property of Ligero. The F -universal
simulator would proceed as follows:

• Sample a random vector v ∈ F.

• For each j ∈I , sample random elements from F for Ux[j],Uy[j],U z[j],Uw[j].

• For each j∈I , sample random elements from F for u′[j],ux[j],uy[j],uz[j],u0[j],uadd[j].

Since the messages computed by the simulator are independent of the functionality
(or even the output of the protocol), it is easy to see that this is an F -universal
simulator.
ExpandViews : We now describe the expand views function for this protocol

• For each j ∈I , compute the following:

– qadd[j] = uadd[j]+Σi∈[m]raddi (j) ·Uw[i, j].

– qx[j] = ux[j]+Σi∈[m]rx
i (j) ·Ux[i, j]+Σ2m

i=m+1rx
i (j) ·Uw[i−m, j].

– qy[j] = uy[j]+Σi∈[m]r
y
i (j) ·Uy[i, j]+Σ2m

i=m+1ry
i (j) ·Uw[i−m, j].

– qz[j] = uz[j]+Σi∈[m]r
z
i (j) ·U z[i, j]+Σ2m

i=m+1rz
i (j) ·Uw[i−m, j].

– p0[j] = u0[j]+Σi∈[m]rq[i] · (Ux[i, j] ·Uy[i, j]−U z[i, j]).

• Use {qadd[j]} j∈I to extrapolate a polynomial qadd of degree < k+ ℓ−1 such
that Σc∈[ℓ]qadd(ζc) = 0, and output {qadd[j]} j∈[n]\I

• For each a ∈ {x,y,z}, use {qa[j]} j∈I to extrapolate a polynomial qa of degree
< k+ ℓ−1 such that Σc∈[ℓ]qa(ζc) = 0 and output {qa[j]} j∈[n]\I .

• Use {q0[j]} j∈I to extrapolate a polynomial q0 of degree < 2k− 1 such that
p0(ζc) = 0 for every c ∈ [ℓ] and output {q0[j]} j∈[n]\I .

CondenseViews: We now describe the condense views function for this protocol. This
function simply removes {qadd[j]} j∈[n]\I , {q0[j]} j∈[n]\I and {qa[j]} j∈[n]\I for each
a ∈ {x,y,z} from the views and outputs the remaining transcript as the condensed
views.

92
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

4.16 Partially Binding Vector Commitments in the ROM

In this section, we present our optimized construction of partially binding vector
commitments. We show that this construction is secure if the discrete log assumption
holds. However, showing a direct reduction is cumbersome. Instead, we first formalize
a variant of the discrete log assumption, called AdaptiveDlog that is more convenient
for our purposes. We will use this variant, presented in Definition 13, as a stepping-
stone in our analysis. Intuitively, there are 3 elements in play when an adversary wants
to break the construction: an element in the CRS h, the element it gets to choose
g∗, and the element corresponding to the index at which it would like to cheat, say
g. In order to break the construction, the adversary would somehow need to uncover
a relationship in the discreet logs between these values. Note the order in which
these are chosen: first the CRS value is sampled, then the adversary selects the value
g∗ which is not binding. Finally, the random oracle “samples” the remaining group
element. AdaptiveDlog captures this game directly; we begin by showing that it is
equivalent to the discreet log assumption.

Lemma 6 (Discrete Log reduces to AdaptiveDlog.) Let A be an adversary win-
ning the AdaptiveDlog game (Figure 4.15) with probability ε , then there exists an
expected polynomial-time adversary A ′ computing discrete logs (Definition 13) in G
with probability ≥ ε−negl(λ).

Proof 11 Consider the following PPT algorithm A ′:

4.16. PARTIALLY BINDING VECTOR COMMITMENTS IN THE ROM 93

y←A ′A (1λ ,G,g,h): computes the discrete log y st. g = hy.

1 : Send h to A ;A returns g∗ ∈G
// Initial query in the h row

2 : r1
$←− Z|G|;g′1← gr1

3 : Send g′1 to A (as ’g’);A returns (x1,y1,z1) ∈ Z3
|G|

4 : if hx1gy1
∗ gr1z1 ̸= 1∨ x1 = 0∨ y1 = 0∨ z1 = 0,return ⊥

// Probe the h row without replacement.

5 : R←{r1};c←⊤
6 : while c =⊤∧R ̸= Z|G|
7 : Rewind A to before message 3 (just before sending g)

8 : r2
$←− Z|G| \R;g′2← gr2

9 : Send g′2 to A (as ’g’);A returns (x2,y2,z2) ∈ Z3
|G|

10 : if hx2gy2
∗ gr2z2 = 1∧ x2,y2,z2 ̸= 0 : c←⊥

11 : R← R∪{r2}
// Extract the discrete log.

12 : Solve the affine system (for free variables α,β):

13 : x1 + y1α + z1r1β = 0
14 : x2 + y2α + z2r2β = 0
15 : return β

Note that the algorithm recovers (x1,y1,r1z1) ̸=(x2,y2,r2z2) st. hx1gy1
∗ gr1z1 = hx2gy2

∗ gr2z2 =
1 with probability ε− 1/|G| and with 2 queries to A in expectation; See Section 3.1
(analysis of the Collision Game) in Attema, et. al[ACK21] for more details. Further-
more since r1,r2 are sampled randomly and ∀i ∈ [2] : xi,yi,zi ̸= 0, the linear system
has full rank except with probability at most 1/|Z|G|| – which is negligible. Hence A ′

recovers the discrete log of g (and g∗) with probability ε−negl(λ).

Lemma 7 For a cyclic group G wherein discrete log is intractable (Definition 13),
let P|G| : G→G be a cryptographic permutation (modelled as a invertible random
oracle) with inverse P−1

|G| : G→ G. The construction shown in Figure 4.16 is a
(computationally binding and perfectly hiding) (ℓ−1)-of-ℓ partially binding vector
commitment scheme.

Proof 12 The completeness of partial equivocation is easily seen (follows from equiv-
ocation of vector Pedersen commitments), so we focus on computational binding and
perfect hiding.

94
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Computational Binding Let A
P|G|

k be a PPT algorithm winning the binding game
with probability ε i.e.

ε = Pr

[
∄S⊂ [ℓ], |S| ≥ t, s.t. i ∈ S,v1,i = . . .= vk,i ∧

BindCom(pp,ck,v(1);r1) = . . .= BindCom(pp,ck,v(k);rk)∣∣∣∣∣ pp← Setup(1λ);

(ck,v(1), . . . ,v(k),r1, . . . ,rk)←A
P|G|

k (1λ ,pp)

]

Then A ′ (Figure 4.17) wins the AdaptiveDlog game with probability ε ′ =
ε/poly(λ)− negl(λ). We lower bound the probability that hx̂gŷ

∗gẑ = 1 and
x̂, ŷ, ẑ ̸= 0. Start by observing that in the chain: ∀i ∈ [2, ℓ] : gi+1 = P|G|(gi−1),
there can be at most one group element g′∗ on which the oracle is queried,
but which has not been output by P|G|: there are ℓ− 1 outputs and ℓ group
elements. If all elements in the chain has been output by P|G|, then define
g′∗ = g1. Suppose the reduction guesses correctly and g∗ = g′∗, this occurs
with noticeable probability 1/poly(λ). Suppose furthermore that A wins the
binding game, in this case we know: Prδ [HW(w)≥ 3] = 1− 1/|G|, because
HW(w(1)) ≥ 2,HW(w(2)) ≥ 2 and w(1),w(2) have at least one distinct non-
zero position each. Note additionally that gw = gw(1) · (gw(2)

)δ = 1 · 1δ = 1,
furthermore:

gw = ∏
i∈[ℓ]∪{0}

gwi
i = ∏

i∈[ℓ]∪{0},(x,y,z)=Wi

(hxgy
∗,g

z)wi = gx̂gŷ
∗g

ẑ = 1

To bound the probability that x̂, ŷ, ẑ ̸= 0, observe that ∃ j∈ [ℓ]\{i∗}where w j ̸= 0
(since HW(w)≥ 3). Hence x̂, ŷ, ẑ can be expressed as: x̂= x̂′+w jx, ŷ= ŷ′+w jy,
ẑ = ẑ′+w jz, where x,y,z are sampled i.i.d. uniform (since j /∈ {0, i∗}). Hence
the probability that either of x̂, ŷ, ẑ are zero, is at most 3/|G| by a union bound.

Perfect Hiding Simply observe that for any permutation P : G→G, the distribution

{P(g) | g $←−G} is uniform. Therefore the distribution of ck is the same for any
B = {i∗} (by letting P = P

−(i∗−1)
|G| ; repeated applications of P−1

|G| (i∗−1) times).

4.16. PARTIALLY BINDING VECTOR COMMITMENTS IN THE ROM 95

Cross-Stacking Compiler

Statement: x = x1, . . . ,xn

Witness: w = (α,wα)

– First Round: Prover computes A′(x,w;rp)→ a as follows:

– Parse rp = (rp
α∥r∥rmap).

– Compute aα ← Aα(xα ,wα ;rp
α).

– Set v = (v1, . . . ,vℓ), where vα = aα and ∀i ∈ [ℓ]\α , vi = 0.

– Compute (ck,ek)← Gen(pp,B = {α}).
– Compute (com,aux)← EquivCom(pp,ek,v;r).

– Send a = (ck,com) to Verifier.

– Second Round: Verifier samples c $←− {0,1}κ and sends it to Prover.

– Third Round: Prover computes Z′(x,wα ,c;rp)→ z as follows:

– Parse rp = (rp
α∥r∥rmap).

– Compute zα ← Z(xα ,wα ,c;rp
α).

– d← FΠα→D(zα ;rmap)

– For i ∈ [ℓ]/α , compute

* zi← TExti(c,d)

* ai←S EHVZK
i (xi,c,zi)

– Set v′ = (a1, . . . ,aℓ).

– Compute r′ ← Equiv(pp,ek,v,v′,aux) (where aux can be regenerated
with r)

– Send z = (ck,d,r′) to the verifier.

– Verification: Verifier computes φ ′(x,a,c,z)→ b as follows:

– Parse a = (ck,com) and z = (ck′,d,r′).

– For i ∈ [ℓ], compute

* zi← TExti(c,d)

* ai←S EHVZK
i (xi,c,zi)

– Set v′ = (a1, . . . ,aℓ)

– Compute and return

b=(ck
?
= ck′)∧

(
com

?
= BindCom(pp,ck,v′;r′)

)
∧

∧
i∈[ℓ]

φ(xi,ai,c,zi)


.

Figure 4.7: A compiler for stacking instances of multiple Σ-protocols.

96
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Multiplications (m) #Clauses (ℓ) Comm. (CDS [CDS94]) Comm. (Stacked Σ, ours)
1000 1 14.6 KB
1000 10 146.1 KB 14.9 KB
1000 100 1,461.4 KB 15.1 KB
1000 1000 1,461.4 KB 15.3 KB

100 000 1 583.9 KB
100 000 10 5,838.6 KB 584.1 KB
100 000 100 58,386.4 KB 584.3 KB
100 000 1000 583,864.0 KB 584.5 KB

Figure 4.8: Concrete communications complexity for disjunctions over Boolean cir-
cuits (R = F2) with different multiplicative complexity, targeting 128-bits of security:
n = 64,M = 631,τ = 23. The communication complexity of our work is computed
when recursive stacking is applied using the optimized commitment scheme described
in Section 4.16.

Ring Size (n) Time (t) Signature Size (|σ |)
21 4 ms 128 B
22 8 ms 192 B
23 12 ms 256 B
24 18 ms 320 B
25 24 ms 384 B
26 34 ms 448 B
27 50 ms 512 B
28 76 ms 576 B
29 127 ms 640 B
210 224 ms 704 B
211 414 ms 768 B
212 813 ms 832 B

Figure 4.9: Performance of ring signatures for rings of different sizes.
All benchmarks run on a single core of AMD EPYC 7601@ 2.2 GHz.

4.16. PARTIALLY BINDING VECTOR COMMITMENTS IN THE ROM 97

y0←A ′Ak(1λ ,G,g0,h): computes the discrete log of g0 in h given oracle access to Ak.

1 : Let pp= (G,g0,h)

2 : (ck,v(1), . . .v(k),r(1), . . . ,r(k))←Ak(1λ ,pp)

3 : S = {i | ∃ (α,β) : v(α)
i ̸= v(β)i } ⊆ [ℓ], if |S| ≤ ℓ− t : return ⊥

4 : for i ∈ S compute the discrete log in h: yi← (r(α)
i − r(β)i)/(v(β)i − v(α)

i)

5 : Pick X ⊆ℓ−t+1 S, compute y0← ∑i∈X yi ·L(X ,i)(0)

6 : return y0

Figure 4.10: Reduction for partially binding commitment scheme to discrete log.

Blum: Rn(x,w) := w ∈ Sn is a Hamiltonian cycle in the graph x ∈ {0,1}n×n

P V

κ times in parallel

π
$←− Sn

r1,1, . . . ,rn,n
$←− {0,1}λ

∀i, j ∈ [n] :
Ci, j← Commit(xπ(i),π(j);rπ(i),π(j))

a = (C1,1, . . . ,Cn,n)

c c $←− {0,1}

τ ← π ◦w

R0← (π,r1,1, . . . ,rn,n)

R1← (τ,r1,τ(1), . . . ,rn,τ(n),C1,1,...,Cn,n)

Rc

if c = 0 compute ∀i, j ∈ [n] :
Ci, j← Commit(xπ(i),π(j);rπ(i),π(j))

if c = 1 compute ∀i ∈ [n] :
Ci,τ(i)← Commit(1;ri,τ(i))

Check: a ?
= (C1,1, . . . ,Cn,n)

Figure 4.11: Blum’s protocol for Hamiltonian cycles. Sn denotes the permutation
group on [n] and ◦ is the group operation. {0,1}n×n denotes the set of adjacency
matrices for n vertex graphs.

98
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

Player 0 computes correlated Beaver triples:

• Sample a PRG seed for every player for i ∈ [n] : si
$←−s0 {0,1}λ .

• Create an empty list of ‘corrected’ multiplication shares: ∆← /0

• Process the circuit gate-by-gate for j ∈ [| f |] do:

– if f j = Input(γ):

1. Sample a random sharing: for i ∈ [n] : [λγ]
(i) $←−si R

– if f j = Add(γ,α,β):

1. Locally add shares: [λγ]← [λα]+ [λβ]

– if f j = Mul(γ,α,β):

1. Compute the product of the masks: λα,β ← λα ·λβ

2. Sample random output mask: for i ∈ [n] : [λγ]
(i) $←−si R

3. Sample random shares of the product: for i ∈ [n] : [λα,β]
(i) $←−si R

4. Compute the correction ∆α,β ← λα,β −∑
n
i=1 [λα,β]

(i)

5. Append ∆α,β to ∆.

• Send correlated randomness to each player: for i ∈ [n] send (∆,si) to Pi

Figure 4.12: KKW Preprocessing Player. R is any finite commutative ring.

4.16. PARTIALLY BINDING VECTOR COMMITMENTS IN THE ROM 99

For every wire (with secret-shared value vγ) the players hold a public
masked value zγ = vγ −λγ . For the input gates the masked values zγ = wγ −λγ

are provided to n online players on the broadcast channel before execution begins.

Player Pi with i ∈ [n]:

• Receive corrections and PRG seed (∆,si) from P0

• Process the circuit f in-order gate-by-gate for j ∈ [| f |] do:

– if f j = Input(γ):

1. Receive the masked input zγ on the broadcast channel.

2. Regenerate the random sharing [λγ]
(i) $←−si R

(players obtain a sharing of the witness wγ = zγ +∑i∈[n] [λγ]
(i))

– if f j = Add(γ,α,β):

1. Locally compute [λγ]
(i)← [λα]

(i)+[λβ]
(i)

2. Locally compute zγ ← zα + zβ

– if f j = Mul(γ,α,β):

1. Regenerate next output mask: [λγ]
(i) $←−si R

2. Regenerate next Beaver share: [λα,β]
(i) $←−si R

3. Correct share: if i = 1 update [λα,β]
(i)← [λα,β]

(i)+∆α,β

4. Locally compute [sγ]
(i) ← zα [λβ]

(i) + zβ [λα]
(i) + [λα,β]

(i) −
[λγ]

(i)

5. Reconstruct sγ (broadcast [sγ]
(i))

6. Locally compute zγ ← sγ + zαzβ

– if f j = Output(α):

1. Reconstruct λα (broadcast [λα]
(i))

Figure 4.13: KKW Online Players. R is any finite commutative ring.

100
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

KKW S (f ,I = {0}), preprocessing is opened.

Sample PRG seed: s0
$←− {0,1}λ

return s0

KKW S (f ,I ̸= {0}), online-phase is partially opened.

Sample condensed broadcast transcript: T
$←− Rm+|w|

Sample per-player PRG seeds: ∀i ∈I : si
$←− {0,1}λ

Sample corrections: ∆
$←− Rm

return (T ,∆,{si}i∈I)

Figure 4.14: Simulating the condensed views in KKW. R is the commutative ring
over which the arithmetic circuits are computed.

Game AdaptiveDlog.

A Game

1 : h h $←−G

2 : g∗

3 : g g $←−G

4 : x,y,z

Wins iff. x,y,z ̸= 0∧hxgy
∗g

z = 1

Figure 4.15: AdaptiveDlog Game. Messages are label (in red) for easy referencing.

4.16. PARTIALLY BINDING VECTOR COMMITMENTS IN THE ROM 101

pp← Setup(1λ)

1 : G← GenGroup(1λ);h $←−G
2 : return (G,h)

(com,aux)← EquivCom(pp,ek,v):

1 : aux
$←− Z|G|

2 : com← BindCom(pp,ck,v,aux)
3 : return (com,aux)

com← BindCom(pp,ck,v,r):

1 : g1 = ck

2 : for i ∈ [2, ℓ] : gi← P|G|(gi−1)

3 : return hrgv1
1 gv2

2 · · ·g
vℓ
ℓ

r← Equiv(pp,ek,v,v′,aux):

1 : g1 = ck

2 : for i ∈ [2, ℓ] : gi← P|G|(gi−1)

3 : r← aux−∑i∈[ℓ] ek · (v′i−vi) ∈ Z|G|
4 : return r

(ck,ek)← Gen(pp,B)

1 : E = [ℓ]\B = {i∗}

2 : ek
$←− Z|G|;gi∗ ← hek

// Apply the inverse permutation i∗−1 times to gi∗ .

3 : for i ∈ [i∗−1,1] : gi← P−1
|G|(gi+1)

4 : ck= g1

5 : return (ck,ek)

Figure 4.16: Optimized partially binding vector commitments from the hardness of
discrete log in the random oracle model. Commitment keys ck and commitments com
are both single group elements in G. Openings consist of a single scalar r ∈ Z|G|.

102
CHAPTER 4. STACKING SIGMAS: A FRAMEWORK TO COMPOSE

Σ-PROTOCOLS FOR DISJUNCTIONS

A ′A
P|G|

k (1λ ,G) plays the AdaptiveDlog game.

1 : Receive h from the AdaptiveDlog game.

2 : Sample q̂ $←− [poly(λ)] where poly(λ) is a bound on the number of RO queries made by A

3 : Run (ck,v(1), . . .v(k),r1, . . . ,rk)←A
P|G|

k (1λ ,pp= (G,h))

Whenever A
P|G|

k makes the q’th query to P|G| (or P−1
|G|) on (previously unprogrammed) Qq ∈G :

a : if q < q̂ : Rq
$←−G;return Rq

b : if q = q̂ :
A : Let g∗ = Qq

B : Send g∗ to AdaptiveDlog; Receive g from AdaptiveDlog.

c : if q≥ q̂ :

A : xq,yq,zq
$←− Z|G|

B : Rq← hxqgyq
∗ gzq ∈G

C : return Rq

4 : Compute g1 = ck; for i ∈ [2, ℓ] : gi← P|G|(gi−1)

5 : if ∄i∗ ∈ [ℓ] : gi = g∗ : return ⊥ (reduction “guessed q̂ wrong”)
6 : for i ∈ [ℓ]\{i∗} : Wi = (xq,yq,zq) st. ∃q : Rq = gi

7 : Let W0 = (1,0,0),Wi∗ = (0,1,0)
8 : Pick p1, p2 ∈ [ℓ], with p1 ̸= p2 st.

∃i1, i′1 : com1 = BindCom(p,ck,v(i1),ri1) = BindCom(p,ck,v(i
′
1),ri1 ′)∧v(i1)p1 ̸= v(i

′
1)

p1

∃i2, i′2 : com2 = BindCom(p,ck,v(i2),ri2)) = BindCom(p,ck,v(i
′
2),ri2 ′))∧v(i2)p2 ̸= v(i

′
2)

p2

If no such p1, p2 exists: return ⊥ (note A
P|G|

k loses the game)
9 : Define:

w(1) := (rip1
∥v(ip1))− (ri′p1

∥v(i
′
p1
)) ∈ Zℓ+1

|G|

w(2) := (rip2
∥v(ip2))− (ri′p2

∥v(ip2)
′
) ∈ Zℓ+1

|G|

g := (h,g1, . . . ,gℓ) ∈Gℓ+1. Note: gw(1)
= 1 ∈G,gw(2)

= 1 ∈G

10 : Pick δ
$←− Z|G|, define: w = w(1)+δ ·w(2)

11 : Let:
x̂ = ∑i∈[ℓ]∪{0},(x,y,z)=Wi wi · x
ŷ = ∑i∈[ℓ]∪{0},(x,y,z)=Wi wi · y
ẑ = ∑i∈[ℓ]∪{0},(x,y,z)=Wi wi · z

12 : Send (x̂, ŷ, ẑ) to the AdaptiveDlog game.

Figure 4.17: Reduction for partially binding commitment scheme to discrete log in
the programmable, invertible random oracle model.

Chapter 5

Curve Trees: Practical and
Transparent Zero-Knowledge
Accumulators

Matteo Campanelli, Mathias Hall-Andersen, Simon Holmgaard Kamp.

Orignally published at USENIX 2023.

Abstract

In this work we improve upon the state of the art for practical zero-knowledge
for set membership, a building block at the core of several privacy-aware appli-
cations, such as anonymous payments, credentials and whitelists. This primitive
allows a user to show knowledge of an element in a large set without leaking the
specific element. One of the obstacles to its deployment is efficiency. Concretely
efficient solutions exist, e.g., those deployed in Zcash Sapling, but they often
work at the price of a strong trust assumption: an underlying setup that must be
generated by a trusted third party.

To find alternative approaches we focus on a common building block: ac-
cumulators, a cryptographic data structure which compresses the underlying
set. We propose novel, more efficient and fully transparent constructions (i.e.,
without a trusted setup) for accumulators supporting zero-knowledge proofs
for set membership. Technically, we introduce new approaches inspired by
“commit-and-prove” techniques to combine shallow Merkle trees and 2-cycles
of elliptic curves into a highly practical construction. Our basic accumulator
construction—dubbed Curve Trees—is completely transparent (does not require
a trusted setup) and is based on simple and widely used assumptions (DLOG
and Random Oracle Model). Ours is the first fully transparent construction that
obtains concretely small proof/commitment sizes for large sets and a proving
time one order of magnitude smaller than proofs over Merkle Trees with Peder-
sen hash. For a concrete instantiation targeting 128 bits of security we obtain:
a commitment to a set of any size is 256 bits; for |S|= 240 a zero-knowledge

103

104
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

membership proof is 2.9KB, its proving takes 2s and its verification 40ms on an
ordinary laptop.

Using our construction as a building block we can design a simple and
concretely efficient anonymous cryptocurrency with full anonymity set, which
we dub Vcash. Its transactions can be verified in ≈ 80ms or ≈ 5ms when
batch-verifying multiple (> 100) transactions; transaction sizes are 4KB. Our
timings are competitive with those of the approach in Zcash Sapling and trade
slightly larger proofs (transactions in Zcash Sapling are 2.8KB) for a completely
transparent setup.

5.1 Introduction

Zero-knowledge proofs are a cryptographic primitive that allows one to prove knowl-
edge of a secret without revealing it. In many applications the focus is on proofs
that are short and with efficient running time. One of the rising applications of zero-
knowledge is in set-membership: given a short digest to a set S, we want to later show
knowledge of a member in the set without revealing the latter. This primitive is useful
in domains such as privacy-preserving distributed ledgers, anonymous broadcast,
financial identities and asset governance (see, e.g., discussion in [BCF+21]).

Limitations of prior work. Our focus in this work is on solutions that are highly
practical. That is, solutions with concretely short proving/verification time and
short proofs. While efficient solutions to zero-knowledge set-membership already
exist, we argue that they have limitations. In particular, either they still have a high
computational/communication cost (we elaborate in Section 5.1 where we compare
to transparent polynomial commitments and ring signatures [LRR+19]) or they rely
on proof systems that are non-transparent. The latter means that, in order for the
system to be bootstrapped, it is necessary to invoke a trusted authority. This is true
for example in Zcash (Sapling) [HBHW21] and in [CFH+22]. While we can partly
overcome this issue by emulating the trusted authority through a large-scale MPC,
this is still highly expensive, both computationally and logistically1. Other solutions,
such as [BCF+21, CHA21], mitigate this problem by requiring a trusted setup for
parameters that are reusable in other cryptographic settings (an RSA modulus). This,
however, still requires invoking a trusted authority or arranging a parameter-generation
ceremony [CHI+20], which may not always be viable. We then turn to solutions that
are fully transparent and still very efficient.

Our contributions.
Our main contribution is a concretely efficient construction for proving private

set-membership with a fully transparent setup. Specifically we design a new data
structure, CURVE TREES, that supports concretely small commitment to a set and
where we can show set membership in zero-knowledge and with a small proof.

The design of a curve tree is simple and relies on discrete logarithm and the random
oracle model (ROM) for its security. A curve tree can be described as a shallow Merkle

1https://z.cash/technology/paramgen/

https://z.cash/technology/paramgen/

5.1. INTRODUCTION 105

tree where the leaves are points over an elliptic curve (and so are internal nodes). To
hash, at each level we use an appropriately instantiated Pedersen hash alternating
curves at each layer (we require a 2-cycle of curves). To prove membership in zero-
knowledge we use commit-and-prove2 capabilities of Bulletproofs and leverage the
algebraic nature of our data structure. Our curves can be instantiated with existing ones
in literature (see “Supported Curves” in Section 5.2). While we focus on accumulators
and set membership, our approach can straightforwardly be applied to opening of
vectors rather than sets obtaining an “index-hiding” vector commitment [ZBK+22].

For a concrete instantiation targeting 128 bits of security we obtain: a commitment
to a set of any size is 256 bits; for |S|= 240 a zero-knowledge membership proof is
2.9KB, its proving takes 2s and its verification 40ms on an ordinary laptop.

Using our construction as a building block we can construct a simple and con-
cretely efficient anonymous payment system with full anonymity set3 and transparent
setup. We dub this payment system VCash4. In VCash, the constraint system used for
the zero-knowledge proof of a “spend” transaction is 20x smaller than that in Zcash
Sapling.

The main distinguishing feature of VCash is that it can be concretely efficient
and still support full anonymity sets. The latter is roughly the subset of existing
transactions a spent transaction can be narrowed down to (if a protocol supports a
full anonymity set then this set consists of the whole history of transactions so far).
For “two inputs/two outputs” settings and for anonymity sets of size 232 (like in
Zcash) our confidential transactions (Vcash) require participants to compute/verify
two Bulletproofs proofs of < 5000 constraints each. Verifying each of the proofs
in parallel (4 cores) in batches of at least 100 transactions (e.g. when verifying the
validity of all transactions in a block) yields a very practical per-transaction verification
time of ≈ 5 ms. Transaction sizes are 4 KB. Our timings are competitive with those
of the approach in Zcash Sapling and trade slightly larger proofs for a completely
transparent setup and simpler curve requirements.

As a side contribution, we provide the first optimized implementation of Bullet-
proofs that can be instantiated with arbitrary curves and supports vector commitments
of arbitrary dimension and arbitrary computations at the same time. To the best of
our knowledge, previous implementations were not written modularly to work with
arbitrary curves or supported only specific computations, such as range proofs.

STRUCTURE-PRESERVING FEATURES. From the theoretical side, one interesting
feature of curve trees is their structure-preserving properties[ACD+16]. This means
our construction never needs to use any combinatorial hash (e.g., SHA2) or use their
bit decomposition, but it only relies on basic structural properties of groups. In

2In the sense of the commit-and-prove building blocks in LegoSNARK [CFQ19] and in the work by
Lipmaa [Lip16].

3An anonymity set can be seen as the subset of existing transactions a spent transaction can be
narrowed down to. We say that a protocol supports a full anonymity set if the set consists of the whole
history of transactions.

4As a reference to both Zcash and Veksel [CHA21] from which it borrows part of its design.

106
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

this sense, this construction provides some nuances to the implications of the recent
impossibility result in [CFGG22].

Related Work

Zero-Knowledge Sets.

Seminal work by Micali, Rabin and Kilian [MRK03] introduce the notion of a
“zero-knowledge set”: a hiding commitment to a set, enabling membership and
non-membership proofs. Note that this is exactly complementary to the goal of this
paper: in zero-knowledge sets, the set is hidden and the retrieved elements pub-
lic, here the set is public and the retrieved element hidden. In Camenisch-Stadler
notation (Section 5.2) this relation is {(S,r) : c = Com(S;r)∧ x ∈ S} instead of
{(x,r) : c = Com(x;r)∧ x ∈ S}.

Highly efficient constructions of zero-knowledge sets are known under a range of
assumptions, notably Chase et al. [CHL+05] generalize the original construction by
Micali et al. using Mercurial commitments.

Accumulators from Groups of Unknown Order.

The original work by Benaloh and de Mare [Bd94] introducing cryptographic accumu-
lators provides a simple construction based on strong RSA: a set of prime integers are
accumulated by iteratively exponentiation in an RSA group. Camenisch and Lysyan-
skaya [CL02] extended this accumulator to be dynamic, Baldimtsi et al. [BCD+17]
generically obtaining an adaptively sound dynamic accumulator by combining 1) an
adaptively sound positive additive accumulator and 2) a non-adaptively sound positive
dynamic accumulator. Rather than RSA, these constructions can be can instantiated
with class groups: which avoids the need for a trusted setup, ut incurs a sustantial
≈ 20× computational overhead at the same security level.

Accumulators from Bilinear Pairings.

Nguyen constructed accumulator from bilinear pairings [Ngu05], this construction
was subsequently extended by Damgård and Triandopoulos [DT08] to support non-
membership proofs. More recently Ghosh et al. [GOP+16] showed how to prove
membership in zero-knowledge. In the concurrent work Zapico et al. [ZBK+22]
reduces the computational cost of proving membership from O(n) to O(log(n)), by
relying on an O(n logn) precomputation. Common for all these works is the reliance
on a structured “powers-of-τ” style structured reference string (SRS): size of the
public parameters is proportional to the (apriori bounded) maximum set size and
knowledge of the trapdoor breaks binding.

Authenticated Hash Tables & Verkle Trees.

Charalapos, et al. [PTT08] suggests using a tree of accumulators: where every internal
node is a cryptographic accumulator containing all its children. Which allows a trade-

5.1. INTRODUCTION 107

off between membership proof size and cost of updating the accumulator. The same
concept (“Verkle Trees”) was subsequently independently rediscovered by industry-
afflicated people [BFB21]. We observed that Charalapos et al. holds a patent for
this construction [CP14] when used for authenticated computation, it is unclear if
this applies to the scheme as used in the Ethereum blockchain. Our work differs
from these by not using an accumulator at each level, the compression function is a
simple Pedersen commitment, furthermore these works do not allow/describe efficient
zero-knowledge membership proofs.

Curve Trees and Algebraic Merkle Trees.

The closest related (zero-knowledge) accumulator is the approach taken in Zcash
(Sapling and Orchard versions) [HBHW21], in which a Merkle tree is instantiated
with a hash function admitting an efficient algebraic description. In case of Zcash this
hash function is based on multi-scalar exponentation over specially chosen elliptic
curves. For “Pedersen hashes” as used in Zcash Sapling, the resulting circuit requires
≈ 44000 constraints (multiplications) for memberships of size 232, Our approach,
on the other hand, requires proving ≈ 4500 constraints in zero-knowledge; roughly
an order of magnitude less. Merkle trees instantiated with “SNARK-friendly hash
functions” (e.g. Poseidon [GKR+21]) has similar performance compared to ours
(see Section 5.8), however the concrete security of these hash functions is less well
understood [BGL20] [rep20].

Halo2 and Recursive Proofs.

Halo25 is a transparent (zero-knowledge) proof system enabling efficient recursion
using “atomic accumulation” and cycles of elliptic curves. For efficiency the curves
used by Halo2 need to have a “smooth” multiplicative subgroup to perform FFT
which rules out some curves, in particular the secp256k1 / secq256k1 cycle (instead
supported by our Bulletproofs implementation). This requirement restricts Halo2’s
compatibility with systems using other curves.

Although both—curve trees and Halo2—rely on the special algebraic structure of a
cycle of curves, their goals are orthogonal: Halo2 is a proof system, ours a specialized
data structure for zero-knowledge for set membership. Our techniques rely on a
commit-and-prove which we instantiate with Bulletproofs for easy comparison.6 It is
possible to instantiate our scheme with Halo2; Halo 2 is ultimately not a competing
approach but a potential way to apply the Curve Tree framework. However Halo2’s
generalized PLONK-based arithmetization [GWC19] enables a more complex set of
potential optimizations, including custom gates and lookups, which makes an apple-
to-apple comparison substantially harder. We believe that replacing Bulletproofs with
Halo2 would improve concrete performance: via custom gates for ECC operations
and tables of precomputed points.

5https://electriccoin.co/blog/explaining-halo-2/
6The Bulletproof arithmetization is R1CS, hence comparing the number of constraints is easy

https://electriccoin.co/blog/explaining-halo-2/

108
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

5.2 Preliminaries

Familiarity with elliptic curves and non-interactive proof systems is a prerequisite for
this paper and in this section we provide a brief (and incomplete) introduction to these
subjects. Since our techniques will only apply to elliptic curves we do not generalize
to other group structures.

Elliptic Curves

We denote by E[Fq]⊆Fq×Fq the set of points in (x,y) on the elliptic curve E [Mil86].
We denote points on elliptic curves using upper-case letters (e.g. G and H). Whenever
clear from context we might omit the base field Fq and simply write E. The curve
points form an Abelian group (E[Fq],+); we use “additive notation”. Throughout this
paper, the number of points on E[Fq] denoted p := |E[Fq]| will always be prime, hence
the group is cyclic. We call the prime field Fp ∼= Z/(pZ) the scalar field of E[Fq] and
denote by [s] ·G, with s ∈ Fp and G ∈ E[Fq], s acting on G in the Z-module (“scalar
multiplication”). We denote by ⟨s,G⟩ = ∑i [si] ·Gi the “inner product” between a
vector of scalars s ∈ Fn

p and a list of group elements G ∈ E[Fq]
n.

Assumption: Generalized Discrete-Log

We rely on a common variant of the discrete logarithm assumption for multiple
generators over elliptic curves:

Assumption 2 (Generalized Discrete-Log) Let G (1λ) a procedure for sampling a
new elliptic curve. For all PPT adversaries A and m≥ 2:

Pr

⟨a,G⟩= 0 ∈ E[Fq]

∧ a ̸= 0 ∈ (Fp)
m :

(E,Fq,Fp)← G (1λ)

G $←− E[Fq]
m

a←A ((E,Fq,Fp),G)

≤ negl(λ)

We refer to this assumption as DLOG throughout the paper. Note that generalized
variant of DLOG has a tight reduction to the standard (m = 2) variant.

Pedersen Commitments

Throughout the paper we will rely on the ubiquitous Pedersen commitment scheme.
The setup consists of (E,Fp,Fq, ℓ,G,H), with Fp = |E[Fq]|, G1, . . . ,Gℓ,H ∈ E[Fq].
The commitment to v ∈ Fℓ

p with randomness r is computed as follows:

C = Com(v;r) = ⟨v,G⟩+[r] ·H ∈ E[Fq]

It is easy to see that computational binding follows from DLOG (Assumption 2). Hid-

ing is perfect and follows from the observation that [r] ·H with r $←− Fp is uniformly

5.2. PRELIMINARIES 109

distributed over the group E[Fq]. Importantly, Pedersen commitments are rerandom-

izable commitments: sampling δ
$←− Fp and computing C∗ ← C + [δ] ·H yields a

commitment to the same v with randomness r+δ , furthermore the distribution of C∗

is independent of C: it is a “fresh” perfectly hiding commitment to the same value.

Avoiding Bit Decomposition via 2-Cycles of Curves

A 2-cycle of elliptic curves consists of two elliptic curves {E(evn),E(odd)} and two
prime fields {Fp,Fq} such that:

p = |E(evn)[Fq]| And q = |E(odd)[Fp]|

In other words: the base/scalar fields of the two curves are complementary. Crucial for
our application will be the observation that a point (x,y)∈E(evn)[Fq] can be treated as
a pair of scalars on E(odd), e.g. [x] ·G1 +[y] ·G2 ∈ E(odd)[Fp] for G1,G2 ∈ E(odd)[Fp]
is a well-defined operation. The observant reader will see that this defines Pedersen
commitments in E(odd) to lists of points on E(evn), without relying on bit-decomposition
for field elements or hashing, making it cheaper in zero-knowledge. Numerous
instantiations of 2-cycles exists, e.g., the Pasta cycle [Hop20] (used in this paper
and Halo2) or the well known secp256k1 / secq256k1 cycle 7. No known attacks
make use of this additional structure, additionally we do not require any efficiently
computable pairings on either curve.

Non-Interactive Zero-Knowledge Proofs

Camenisch-Stadler Notation

When expressing an NP relation R(x,w) we use a variant of Camenisch-Stadler
notation[CS97], the witness w is explicitly (enclosed in brackets) and the public
statement x is defined by all remaining terms e.g. the “discrete log relation” R :={
(z) : y = [z] ·G

}
– the witness is the scalar z ∈ Fp, while group elements G,y ∈ E

constitute the instance.

Non-Interactive Zero-Knowledge Arguments-of-Knowledge (NIZKAoKs)

Definition 17 A NIZKAoK for a relation family R= {Rλ}λ∈N is a tuple of algorithms
ZK= (Prove,VerProof) with the following syntax:

• ZK.Prove(urs,R,x,w)→ π takes as input a string urs, a relation description R,
a statement x and a witness w such that R(x,w); it returns a proof π .

• ZK.VerProof(urs,R,x,π)→ b ∈ {0,1} takes as input a string urs, a relation
description R, a statement x and a proof π; it accepts or rejects the proof.

7With secp256k1 being used by the Bitcoin blockchain.

110
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

Non-Interactive Zero-Knowledge schemes (or NIZKs) require a reference string
which can be either uniformly sampled (a urs), or structured (a srs). In the latter case
it needs to be sampled by a trusted party. In this work we use and assume transparent
NIZKAoKs, i.e. whose algorithms use a reference string urs sampled uniformly.

We require a NIZKAoK to be complete, that is, for any λ ∈ N,R ∈R and (x,w) ∈
R it holds with overwhelming probability that VerProof(urs,R,x,π) where urs

$←−
{0,1}poly(λ) and proof π ← Prove(urs,R,x,w). For security we require standard
notions of knowledge-soundness and zero-knowledge:

Knowledge-Soundness. For all λ ∈ N and for all (non-uniform) efficient adversaries
A , there exists a (non-uniform) efficient extractor E such that

Pr

urs←
$←− {0,1}poly(λ);

(x,π)←A (urs)

w← E (urs)

:
Rλ (x,w) ̸= 1 ∧

Vfy(urs,x,π) = 1

≤ negl(λ)

Note the order of quantifiers: the extractor E depends on A .

Zero-Knowledge. There exists a PPT simulator S such that for any λ ∈ N, PPT A ,
relation R ∈R, (x,w) ∈ R, it holds p0 = p1 where:

pb := Pr

 urs1
$←− {0,1}poly(λ)

(urs0,π0)←S (1λ ,x)

π1← Prove(urs,x,w)

: A (1λ ,ursb,πb) = 1


Remark 6 (Practical Efficiency) For a broad class of NIZKs the “cost” of the NZIK8

scales with the number of multiplicative constraints in the relation. Hence when
comparing/estimating how “expensive” a certain relation is prove using a NIZK, the
number of multiplications is a broadly useful metric which translates to concrete
performance for a wide range of NIZKs.

Commit-and-Prove for Pedersen Commitments

The techniques in this paper rely heavily on efficient “commit-and-prove” NIZKs
for Pedersen commitments (Section 5.2). A “commit-and-prove” (C&P) NIZKs for
Pedersen commitments enable efficient proofs of relations in which (part of) the
witness is additionally committed inside a pedersen commitment, i.e. relations of the
form:

R∗ := {(w,r) : C = Com(w;r) ∈ E[Fq]∧R(x,w) = 1}

Many efficient “commit-and-prove” NIZKs exists e.g. Bulletproofs[BBB+18], Com-
pressed Σ-Protocols[AC20] and Halo2. All these schemes make black-box use of the
group E[Fq], i.e. avoid expressing the group operation as an NP relation over Fq. Note
that in the example above w ∈ Fℓ

p, where Fp is the scalar field of E[Fq].
8In prover time, verifier time or proof size, depending on the concrete NIZK.

5.3. ZERO-KNOWLEDGE SET MEMBERSHIP 111

A Concrete C&P-NIZKAoK: Bulletproofs

We denote by zk-BP[E] an instantiation of the Bulletproofs [BBB+18] NIZKAoK
on the elliptic curve E. The Bulletproofs scheme exbibits the following relevant
properties: (1) It is a commit-and-prove for Pedersen commitments on E[Fq] and an
concretely efficient proof system for R1CS relations over Fp. (2) The URS consists of
a list of random group elements in E with size linear with the size of the relation being
proved. (3) zk-BP[E] is computationally (simulation) sound in the random oracle
model under the DLOG assumptions (Assumption 2) on E[Fq].

5.3 Zero-Knowledge Set Membership

In this section we describe a modular primitive for proving set memberships in zero-
knowledge, which can be composed with commit-and-proof zero-knowledge proof
system to prove additional properties about the member of the set. Informally, for a
set of rerandomizable commitments (see Section 5.2) S = {C1, . . . ,Cn} the primitive
proves:

{(r, i) : Ĉ = Rerand(Ci,r)}

In other words, the commitment Ĉ is a rerandomization of a commitment in S, without
revealing which. Additional properties about the opening of Ĉ can then be proved
using commit-and-prove techniques (see Section 5.2).

Need for Compression. The relation outlined above has size n, as a result verifying a
proof for the relation requires O(n) work – to even read the statement. To reduce this
cost, the set of commitments itself can be compressed using a commitment. When
the set is fixed, or incrementally updated, this greatly reduces computation for both
prover and verifier. We formalize this general primitive below. Our scheme achieves
O(log(n)) communication and O(D

√
n) computation where D is a parameter of the

scheme (D is both constant and small) and n is the size of the set. 9

Select-and-Rerandomize Accumulators

Below, we fix the message space of the commitment scheme to Fk for some k and its
randomness space to F – as is the case for Pedersen commitments (Section 5.2). Our
definitions below can be generalized easily.

Definition 18 (Select-and-Rerandomize) A select-and-rerandomize accumulator scheme
consists of six algorithms:

SelRerand.Setup(1λ)→ pp returns public parameters of the scheme. These parame-
ters are transparent—no trusted party needs be invoked.

SelRerand.Comm(pp,vleaf,o)→C commits to a string vleaf with randomness o.

9The circuit has O(D
√

n) constraints for each layer, but as D is constant this does not affect the
asymptotic complexity. Similarly the size of the proof is Θ(log(D

√
n)) = Θ(logn)

112
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

SelRerand.Rerand(pp,C,r)→ Ĉ rerandomizes committment C with randomness r.

SelRerand.Accum(pp,S)→ A deterministically accumulates a set of commitments.
We assume the set S to have a canonical order.

SelRerand.Prove(pp,S,C,r)→ π returns a proof showing that C∈ S verifiable through
a rerandomized commitment to c with randomness r.

SelRerand.Vfy(pp,A,Ĉ,π)→ 0/1 verifies that Ĉ is a rerandomization of an element
in the set.

Correctness of Select-and-Rerandomize. For any λ ∈ N, for any set S = {vi}i,
j∗ ∈ [|S|], commitment randomness (o1, . . . ,on) and commitment rerandomization r
the verification always succeeds, i.e.

Pr


pp← SelRerand.Setup(1λ)

ci← SelRerand.Commit(pp,vi,oi) i = 1, . . . ,n

A = SelRerand.Accum(pp,{C1, . . . ,Cn})
Ĉ = SelRerand.Rerand(ck,C j∗ ,r)

π ← SelRerand.Prove(pp,S,C j∗ ,r)

: SelRerand.V (pp,A,Ĉ,π) = 1

= 1

The above can be thought as a main correctness property. For it to be meaning-
ful, it needs to be complemented by the following one, which specifically makes
explicit what it means for commitments (output of Comm) to be rerandomizable:
for any λ ∈ N, for any message m ∈ Fk, opening o and randomness r ∈ F, it
should hold that SelRerand.Rerand(pp,Comm(pp,m;o)) = Comm(pp,m;o+ r) and
pp← SelRerand.Setup(1λ)10.

For our application/instantiation we require the select-and-rerandomize scheme to
satisfy the following security notions:

Select-and-Rerandomize Binding. This is the main security definition of our model.
We say the select-and-rerandomize scheme is binding if there exists a negligible
function negl(λ) such that for any PPT adversary A :

Perfect Hiding of Commitment. For all m, m′, pp← SelRerand.Setup(1λ) the
following distributions are perfectly indistinguishable:

{SelRerand.Comm(pp,m,o) | o $←− F}

≈ {SelRerand.Comm(pp,m′,o′) | o′ $←− F}

Select-and-Rerandomize Zero-Knowledge. A select-and-rerandomize is (perfect)
zero-knowledge if there exists an efficient simulator S , such that for any λ ∈ N, any

10Notice that homomorphic commitments (and thus Pedersen commitments) satisfy this property.

5.4. CURVE TREES AS ACCUMULATORS 113

Challenger Adversary

pp← SelRerand.Setup(1λ)

pp

(v1, . . . ,vn),(o1, . . . ,on),π, v̂,o′

Ci = SelRerand.Commit(pp,vi,oi) i = 1, . . . ,n

Ĉ = SelRerand.Commit(pp, v̂,o′)

A = SelRerand.Accum(pp,{C1, . . . ,Cn})

Return 1 iff v̂ ̸∈ {vi}i and SelRerand.Vf(pp,A,Ĉ,π) = 1

Figure 5.1: Security experiment for zero-knowledge set membership

(stateful) adversary A , any j∗ ∈ [n], it holds p0 = p1 where

pb := Pr



pp← SelRerand.Setup(1λ);

(v1, . . . ,vn,o1, . . . ,on)←A (pp)

S := {Ci = SelRerand.Commit(pp,vi,oi)}i∈[n]

r $←− F;Ĉ = SelRerand.Rerand(pp,C j∗ ,r)

π ← Xb(pp,S,C,Ĉ,r)

A (pp,Ĉ,π) = 1


With X0(pp,S,C,Ĉ,r) :=S (pp,S,Ĉ) and X1(pp,S,C,Ĉ,r) :=SelRerand.Prove(pp,S,C,r).

Remark 7 Our formalization of SelRerand combines together commitments, accu-
mulators (Definition 23) and zero knowledge properties. There are, of course, other
possible way to model this primitive. We found this natural enough. We also observe
that our definition of correctness and binding imply their counterparts in a standard
accumulator as a special case (where the commitment and the rerandomization are
trivial).

5.4 Curve Trees as Accumulators

In this section we first define curve trees. We then describe some of its properties in
terms of commitments (that are binding and hiding). Finally, we show how to traverse
a tree to show membership of a an element in zero-knowledge. The latter represents
our actual construction (Figure 5.2).

114
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

Intro to (ℓ,E(evn),E(odd))-Curve Trees

Recall (from Section 5.2) the observation that [x] ·G1 + [y] ·G2 ∈ E(odd) for any
(x,y) ∈ E(evn)

11 is a meaningful operation. This is generalizable to any number ℓ of
E(evn) points: computing ⟨x,Gx

E(odd)
⟩+⟨y,Gx

E(odd)
⟩ ∈E(odd) for i∈ [ℓ] : (xi,yi)∈E(evn).

This is a compression function fE(odd) : E(evn)
ℓ 7→ E(odd). At this point a natural strategy

to obtain an accumulator is to use fE(odd) to construct a Merkle tree from fE(evn) : a
tree in which every parent (an E(odd) point) is the hash of its children (E(evn) points)
using fE(odd) . However this encounters an obvious “type problem”: the output of
fE(odd) is a point on E(odd), while the inputs are points on E(evn), preventing us from
applying fE(odd) to the resulting outputs. The solution to this “type mismatch” is to
define fE(evn) : E(odd)

ℓ 7→ E(evn) analogously to fE(odd) and alternate the compression
function at every level of the tree. We call this construction a Curve Tree, which can
be seen as an “algebraically compatible” Merkle tree using Pedersen commitments
alternating over E(evn)/E(odd): a parent node on one curve will be the hash of its
children, represented as points on the other curve. To refer more easily to curves
alternating within a tree, we introduce the following piece of notation.

Remark 8 (Notation for alternating curves) As mentioned above, a curve tree al-
ternates between curves at each level. If we are referring to a specific “current” level
(obvious from context), we will denote the corresponding curve as E(_). The “other”
curve will be denoted by Eother(_). That is: if E(_) is E(evn), then Eother(_) is E(odd), and vice
versa. We extend this notation to subscripts for group elements in the natural way
(see, e.g., usage in the following definition).

In order to define a Curve Treewe adopt a variant of (standard) approaches to
defining a tree as a recursive data structure: an internal node is a list of (a function
of) its children. The function which maps children to parents that we adopt uses an
intermediate “labeling” step. A label can be thought of as a group element succinctly
describing the node.

Definition 19 (Curve Trees) A Curve Tree is parameterized by (I). a depth D ∈ N,
(II). a branching factor ℓ ∈ N, (III). a 2-cycle of Elliptic curves (E(evn),E(odd),Fp,Fq)
(IV). 2ℓ points Gx

(evn),G
y
(evn) ∈ Eℓ

(evn) (V). 2ℓ points Gx
(odd),G

y
(odd) ∈ Eℓ

(odd).

The tree is defined recursively over D a follows:

Leaves: (0, ℓ,E(_),Eother(_))−CurveTree:
A leaf node is completely described by a curve point C ∈ E(_). The label of a
leaf is C .

Parents: (D, ℓ,E(_),Eother(_))−CurveTree:
An internal node C is a list of ℓ (D− 1, ℓ,Eother(_),E(_))-Curve Trees. Let C1 =

11Assuming the identity (“point-at-infinity”) is represented in Fq×Fq

5.4. CURVE TREES AS ACCUMULATORS 115

(x1,y1) ∈ Eother(_), . . . , Cℓ = (xℓ,yℓ) ∈ Eother(_) be their respective labels. The
label C ∈ E(_) for the internal node is then defined as:

C = ⟨⟨x⟩,Gx
(_)⟩+ ⟨⟨y⟩,Gy

(_)⟩ (5.1)

(Note that the curves are switched between levels)

Trees for Sets. When we say that a curve tree is built for a set S⊆ E (of size ℓD) we
mean the natural layer-by-layer algorithm inductively constructing a tree with S as the
leafs: partitioning S into subsets of size ℓ in some fixed way, then computing a Curve
Tree for each set in the partition and forming a parent for the resulting ℓ children.

Binding and Hiding within Curve Trees

The previous notion (Definition 19) uses 2ℓ points per curve (Gx
(evn),G

y
(evn) ∈Eℓ

(evn) and
Gx

(odd),G
y
(odd) ∈ Eℓ

(odd)) in order to label parent nodes by compressing their children.
This already achieves a form of binding. By sampling one additional point per curve–
H(odd) ∈E(odd),H(evn) ∈E(evn)– we can blind / rerandomize a Curve Tree in the natural
way. The root of a tree (and of each subtree) thus becomes a Pedersen commitment
that is both binding and hiding. We formalize these observations below:

Lemma 8 Assuming DLOG (Assumption 2) on E(evn) and E(odd), the root C ∈ E(_) of a
(D, ℓ,E(_),Eother(_))–CurveTree is a (non-hiding) Pedersen commitment whose opening
is the ℓ roots of its children (in Eother(_)). Additionally, for the same C and a random
scalar r, the group element Ĉ :=C+[r] ·H(_) is a hiding Pedersen commitment to C’s
children.

Proof 13 The first part is a direct implication of the definition above. Also, observe
then any internal node is already a root to a subtree. Let r′ be a scalar (in the
appropriate field) and let Ĉ = C+[r′] ·H(_). From standard properties of Pedersen
commitments, we can observe Ĉ is still bound to the children of C. Hiding follows
immediately (see Section 5.2).

Traversing (ℓ,E(evn),E(odd))-Curve Trees

We now extend upon the observation in Section 5.4 that a node in a tree can be
rerandomized. A natural strategy which stems from this observations is that, to prove
membership of a Curve Tree in zero-knowledge, we can descend the tree one layer at
a time starting from the root and following this approach: open a (hiding) commitment
to a (D, ℓ,E(_),Eother(_))-Curve Tree, pick one of it children (in zero-knowledge), then
rerandomize the child and “output” the resulting hiding commitment to the (D−
1, ℓ,Eother(_),E(_))-Curve Tree; apply recursion. In this section we formalize a more
efficient version of this informal sketch.

116
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

Descending a Single Level of the Tree

Our central component is a simple construction for a select-and-rerandomize-like
relation for a single level in a curve tree. We later apply this at many levels at once
in order to obtain a full select-and-rerandomize (Figure 5.2). Consider a curve tree
whose internal nodes at layer d−1 are in E(_). The inputs to relation R(single-level,(evn))

(resp. R(single-level,(odd))) are:

• public inputs: a rerandomized commitment Ĉ ∈ E(odd) (resp. E(evn)); its alleged
parent C ∈ E(evn) (resp. E(odd));

• witnesses: index i whose semantics is “Ĉ is the (rerandomized) i-th child of C”;
Pedersen opening scalars r,δ ,x,y.

At each layer, this relation opens the parent commitment C to ⟨x⟩,⟨y⟩ using a commit-
and-prove over E(_), plus it shows rerandomization of one of the children. At each
level, even or odd, it is defined as follows.

Definition 20 (Relation for Select-and-Rerandomize) Define the following NP re-
lation:

R(single-level,E(_)) :=



(
i,r,δ ,

x,y

)
:

// open parent

C = ⟨[⟨x⟩] ,Gx
(_)⟩

+ ⟨[⟨y⟩] ,Gy
(_)⟩

+[r] ·H(_) ∈ E(_)

// randomize i’th child

Ĉ = (xi,yi)+ [δ] ·Hother(_) ∈ Eother(_)


We can implement this efficiently because the “parent opening” constraints can be

directly enforced using a commit-and-prove for Pedersen commitments (Section 5.2).
The additional “child opening” requires a single, cheap fixed-based exponentiation
explicitly expressed as constraints. We describe an optimized arithmetic circuit for
the relation above in the full version.

The following property will be useful for correctness later. It states that the relation
above expresses the parent-child relation in a curve tree and that this holds even if we
rerandomize children or internal nodes.

Lemma 9 Consider a set S and a single-level curve tree (one root immediately
followed by leaves) built on it. Let Cleaf = (xi,yi) be one of the leaves. Then the
above relation R(single-level,(_))—for the only existing level d = 1—is satisfied for any
rerandomization factor δ such that Ĉ =Cleaf +[δ] ·Hother(_). This property still holds if
the root of the tree is rerandomized by some scalar r.

Proof 14 This is a straightforward implication of how curve trees are defined. More
in detail: In a single-level curve tree, C will be the root and thus constructed with

5.5. CORRECTNESS AND SECURITY 117

r = 0. The first equation will be trivially satisfied by x,y such that ((x j,y j)) j are
the leaves (i.e., the children of the root C). The second equation will be satisfied
by our assumption on Ĉ. We finally observe that we can pick an honestly generated
root, rerandomize it by adding [r] ·H(_) for a scalar r and use the latter to let the first
equation check. This proves the last part of the lemma statement.

Descending all D Layers of The Tree

So far we discussed proving membership zooming in on a single level of a curve tree.
We now want an approach that works for multiple levels. One straightforward method
works by providing a separate proof for each level (this would be a proof for the
relation in Definition 20). We will do something better instead. We leverage two facts:
i) that there are two algebraic groups we are working with (depending on the layer
parity); ii) that we can produce a single proof at once and for multiple layers “working
in the same group”. This way we are able to reduce our relation to two proofs only,
one for the parents at odd layers and one for parents at even layers.

These two proofs will show respectively two “multi-leveled” relations, one for
odd layers and on for even layers. They are defined below.

R(evn-levels) :=

 ∧
j∈{0,2,...,D−2}

R(single-level,(evn))


R(odd-levels) :=

 ∧
j∈{1,3,...,D−1}

R(single-level,(odd))


The witnesses and public statements for these relations are respectively the con-

catenation of the witnesses and public statements in Definition 20. See also ??. The
full construction is in Figure 5.2.

5.5 Correctness and Security

Theorem 7 The construction in Figure 5.2 is a transparent select-and-rerandomize
(Section 5.3). Its security relies on DLOG (Assumption 2) in E(evn) and E(odd) and the
security of Bulletproofs as a NIZKAoK. It has O(D

√
n) prover/verifier complexity12

and its proof consists of D− 1 group elements and two Bulletproofs (each of size
O(log n

D)).

Proof 15 We first observe that, by the DLOG assumption on both curves E(odd) and
E(evn), we can use the fact that, by the standard Fiat-Shamir transformation [FS87],
zk-BP[E(odd)] (resp. zk-BP[E(evn)]) is a correct, zero-knowledge and extractable NIZK.
This will be useful in the remainder of the proof.

12In practice D≈ 4.

118
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

SelRerand.Setup(1λ)→ pp

Sample G(evn) ∈ E(evn)
Nurs ,H(evn) ∈ E(evn)

Sample G(odd) ∈ E(odd)
Nurs ,H(odd) ∈ E(odd)

Return all sampled elements as pp

SelRerand.Comm(pp,vleaf ∈ F||E(evn)|,o ∈ F||E(evn)|)→C

C← G(evn)
1 · [vleaf]+H(evn) · [o]

return C ∈ E(evn)

SelRerand.Rerand(pp,C ∈ E(evn),r ∈ F||E(evn)|)→ Ĉ

Ĉ←C+H(evn) · [r]
return Ĉ ∈ E(evn)

SelRerand.Accum(pp,S′ = {C1, . . . ,Cn})→ rt

Return rt, root of a tree computed on S′ as by Definition 19

SelRerand.P(pp,S,Cleaf,r(D))

Reconstruct tree from S; let rt be its root

Let C(0), . . . ,C(D) be the path elements to Cleaf in the tree

(with C(0) corresponding to rt, C(D) =Cleaf)

Let Ĉ(0) := rt and r(0) := 0
for k = 1, . . . ,D/2 do

j← 2k−1// j = 1,3, . . .
j′← 2(k−1)// j′ = 0,2, . . .

Sample r(j) $←− F|E(odd)|

if j′ < D then Sample r(j′) $←− F|E(evn)|

Ĉ(j)←C(j)+
[
r(j)
]
·H(odd)

Ĉ(j′)←C(j′)+
[
r(j′)

]
·H(evn)

endfor

π(evn)← zk-BP[E(evn)].Prove
(
pp,R(evn-levels),x(evn),w(evn)

)
π(odd)← zk-BP[E(odd)].Prove

(
pp,R(odd-levels),x(odd),w(odd)

)
Return π

∗ :=
(

Ĉ(1), . . . ,Ĉ(D−1),π(evn),π(odd)

)
SelRerand.V (pp, rt,Ĉleaf,π

∗)

Parse π
∗ as

(
Ĉ(1), . . . ,Ĉ(D−1),π(evn),π(odd)

)
Let Ĉ(D) := Ĉleaf

Let Ĉ(0) := rt

b(evn)← zk-BP[E(evn)].VerProof
(
pp,R(evn-levels),x(evn),π(evn)

)
b(odd)← zk-BP[E(odd)].VerProof

(
pp,R(odd-levels),x(odd),π(odd)

)
Accept iff b(evn)∧b(odd) = 1

Figure 5.2: Construction of Curve Tree Select-and-Rerandomize for a set of size n,
branching factor ℓ, depth D (which we assume to be even), on cycle (E(evn),E(odd)).

5.5. CORRECTNESS AND SECURITY 119

Figure 5.3: Illustrating proving select-and-rerandomize for a tree with D = 2 and
ℓ= 4. Letters R,M,L hint respectively to commitments to root, a “middle” and “lower”
layer respectively. The textured box and diamond areas denote the relation proven
through Bulletproofs (on different curves, hence the different color). The dashed
arrows going towards the right denote rerandomization.

Correctness. Correctness of rerandomization is immediate: we are using standard
Pedersen as a commitment, which is rerandomizable. That is if C = G(evn)

1 · [vleaf]+

H(evn) · [o] then its rerandomization by r is Ĉ =C+H(evn) · [r] = G(evn)
1 · [vleaf]+H(evn) ·

[o+ r].
To argue Select-and-Rerandomize correctness we will invoke these facts: that

the output of Comm—i.e., leaves—are rerandomizable objects (observation from
previous paragraph), the fact that internal nodes are rerandomizable (Lemma 8) and
finally the correctness of Bulletproofs as NIZK. We can use the above to observe that,
for an honestly generated commitment to a set, the honest prover will reconstruct a
path, rerandomize each elements and then prove a conjunction of the level equation
(R(single-level,(_))). We can invoke correctness of Bulletproofs if its prover is invoked with
a statement satisfying those equations (see Lemma 9). Observing that a conjunction
of satisfiable R(single-level,(_))-s is satisfiable (with corresponding witnesses) concludes
the correctness proof.

Hiding and Zero-knowledge. Hiding is immediate from properties of Pedersen
commitments. We describe a simulator S for the zero-knowledge which outputs
π∗ consisting of : Ĉ(1), . . . ,Ĉ(D−1) fresh commitments to dummy values; π(evn) and
π(odd) outputs of the respective simulators for the Bulletproofs NIZK on the respective
relations. Notice that—by the definition of the game for select-and-rerandomize zero-
knowledge and Lemma 9—the Bulletproofs simulators are invoked on true statements,
crucially. To argue indistinguishability of the output of our simulator from that of
the honest prover, we can just apply a hybrid argument where we invoke hiding of
commitments and zero-knowledge of the underlying Bulletproofs.

Select-and-Rerandomize Binding.

120
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

For sake of clarity and simplicity of notation, we first show our proof for the
two-level case D= 2 and then describe how it generalizes.

The verifier will then receive the following (see also definition of π⋆ in Figure 5.2
for context as well as Figure 5.3 for visual cues and an example):

• A rerandomized commitment to the leaf Cleaf

• A proof π∗ consisting of: 1. a rerandomized commitment Ĉmid to the intermediate
layer (Ĉ(1) in Figure 5.2); 2. an “upper-level” proof π↑, “linking” root and mid
layer; 3. a “lower-level” proof π↓, “linking” mid and leaf layer.

As in the definition of binding (Section 5.3), we denote by v̂ a malicious value not in
the honestly generated set (but which the adversary “will claim” it’s in the set).
We mark in blue elements that are extracted from the proofs.

Step 1. Apply knowledge-soundness to extract from the upper proof:

Ĉroot =⟨. . .x(Cmid) . . . ,Gx
(_)⟩

+ ⟨. . .y(Cmid) . . . ,Gy
(_)⟩+[rroot] ·H(_)

(5.2)

Ĉmid =Cmid +[δmid] ·Hother(_) (5.3)

Observation a). We observe that above that the extracted Cmid will be the same as in
the honest construction step of the tree (w.l.o.g. we can ignore the specific index on the
path for it—this holds for all indices). If this were not the case we would be violating
Lemma 8: Croot is an internal node of the tree and so it is a binding commitment to its
children (see statement of Lemma 8). This observation will be useful later since we
know the discrete logarithm of Cmid in Gx

other(_),G
y
other(_),Hother(_).

Step 2. Apply knowledge-soundness to extract from the lower proof:

Ĉmid =⟨. . .x(Cleaf) . . . ,Gx
other(_)⟩

+ ⟨. . .y(Cleaf) . . . ,Gy
other(_)⟩+[rmid] ·Hother(_)

(5.4)

Ĉleaf =Cleaf +[δleaf] ·H(_) (5.5)

In addition to the group elements above, we will also extract, i∗, the index Cleaf

refers to (see first witness in Definition 20). Observation b). Because the ad-

versary is successful in the binding experiment (through some claimed v̂ ̸∈ S =
{vi}i), we can conclude that i∗ such that Cleaf ̸= Comm(vi∗ ,oi∗). (Otherwise we
would have Comm(vi∗ ,oi∗)+ [δleaf] ·H(_) = Ĉleaf = Comm(v̂, ô) which would break
DLOG) This is equivalent to saying that x(Cleaf) ̸= xi∗ or y(Cleaf) ̸= yi∗ , where
xi∗ := x(Comm(vi∗ ,oi∗)),yi∗ := y(Comm(vi∗ ,oi∗)).

Step 3. Combine equations Equation (5.3) and Equation (5.4): Now, combining the
equations, we can observe that:

[rmid−δmid] ·Hother(_)−Cmid+

⟨. . .x(Cleaf) . . . ,Gx
other(_)⟩+ ⟨. . .y(Cleaf) . . . ,Gy

other(_)⟩= 0

5.6. FINAL CONSTRUCTION: CURVE TREES WITH COMPRESSED POINTS121

This allows an adversary to break DLOG (Assumption 2) by using the following facts.
As we observed (obs. (a)), Cmid is the same as in the honest tree construction, which
implies its discrete logarithms can be derived knowing the original honest set. If
x(Cleaf) ̸= xi∗ , the adversary can then break DLOG for the generator Gx

i∗,other(_). This
becomes clear when rewriting the equation above like this:

Gx
i∗,other(_) =

(
xi∗−x(Cleaf)︸ ︷︷ ︸

̸=0

)−1 ·
(
[rmid−δmid] ·Hother(_)+

⟨x(leaf)
̸=i∗ ,Gx

̸=i∗,other(_)⟩+ ⟨. . .y(Cleaf) . . . ,Gy
other(_)⟩

)
where x(leaf)

̸=i∗ :=
(
x(Comm(vi,oi))

)
i̸=i∗ . If y(Cleaf) ̸= yi∗ , we can modify the above

accordingly to apply to y. This concludes the proof.

To generalize the proof to D≥ 2. First, we recursively apply Step 1 and observation
(a), i.e., we repeatedly apply Lemma 8 to argue that is the same as in the honestly
constructed tree for each internal node Cmid on the path. Then, as we did above, we
apply step 2 and step 3 for the last two layers, as well as observation b). (Notice that,
in order to extract the equations, we will still use two proofs but now each of them will
allow us to extract multiple levels. There are still only two proofs—even and odd—but
now they refer to multiple disjoint levels of the tree instead of just two).

5.6 Final Construction: Curve Trees with Compressed
Points

In this section we describe some optimizations we employ in our final construction.
Our initial observation is that a curve tree (as defined in Definition 19) uses both x
and y coordinates to represent a node (leaf or internal). This requires 2ℓ generators at
each level. The factor 2 will become a cost at commitment, proving and verification
time, as well in proof size. Here we discuss how to remove this factor.

The starting point of our idea are folklore approaches to point compression which
rely on encoding a point through the x coordinate. We need to take extra care though.
Where we need to take extra care is in: a) making sure, through appropriate checks.
that a malicious prover cannot exploit this compression; b) making sure the latter
checks are efficient constraints-wise when we prove/verify them in zero-knowledge.
In order to do this we exploit the fact that the leaves in the tree are agreed on publicly
(we remind that in our model as well in confidential transactions, the whole set of
points is public; the item we prove membership on is hidden). This way, we can make
sure at commitment time that each leaf is represented through pairs of points of a
certain form. We call these points permissible. We modify our definition of curve
trees to explicitly take compression and permissibility into account (Definition 21).
To efficiently prove/verify this we rely on 2-universal hash functions (see rest of this
section and Equation (5.6)). Their algebraic nature allows us to not to employ bit
decomposition. As a consequence, these techniques have nearly no impact on any
additional complexity of the relation proved in zero-knowledge.

122
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

When we to plug in these additional tricks, our construction (Figure 5.2) stays es-
sentially the same: we can describe its changes in a modular fashion (see Section 5.6).
The same holds for security and correctness proofs.

Point Compression and Permissible Points

In order to reduce the number of exponentiations during commitment and the size
of the witness we rely on committing only to the x-coordinate of children node. To
guarantee that our construction remains binding we ensure that only one of (x,y) and
(x,−y) is “allowed”. One common choice is to take the numerically smallest between
y and −y, or discriminate based upon the parity (even/odd) over Z, however neither
of these constraints can be efficiently expressed as an arithmetic circuit; instead we use
a universal hash function (which does not require bit decomposition). Let S(v) = 1 iff.
v ∈ F is a quadratic residue (i.e. there exists w ∈ F st. w2 = v) and S(v) = 0 otherwise.
Now consider the following family of 2-universal hash functions from any field to
{0,1}:

Uα,β (v) : F→{0,1} Uα,β (v) 7→ S(α · v+β) (5.6)

Observe that the constraint Uα,β (v) = 1 can be enforced using a circuit with multi-
plicative complexity 1, showing {(w) : w2 = (α ·v+β)}. We exploit this to efficiently
define a set of “permissible points” on E:

PE = {(x,y) | (x,y) ∈ E(Fp)∧Uα,β (y) = 1∧Uα,β (−y) = 0}

Note that 1/4 of the points on E are permissible and any (x,y) ∈PE is uniquely
defined by its x-coordinate – this is the case for any finite field of characteristic
/∈ {2,3}.

We make sure at commitment time that nodes are converted to permissible points
by adding appropriate randomness. This is formalized in the supplementary material
in ?? in the procedure AsPermissible as well in the “compressed points” definition of
curve trees (Definition 21), which invokes it. In expectation, procedure AsPermissible
requires 4 curve additions and 8 square roots.

Curve Trees with Compressed Points

The following definition simply adapts a curve tree to the setting where leaves
are required to be permissible and internal children nodes are compressed through
AsPermissible before committing to them in their parent.

Definition 21 (Curve Trees with compressed points) A Curve Tree with compressed
points follows the same basic inductive definition as Definition 19, but with the
following differences: first, the tree is also parametrized by two permissible sets
P(evn) ⊆ E(evn) and P(odd) ⊆ E(odd). Second, Equation (5.1) (root label C of an
internal node) becomes

C = ⟨⟨x⟩′,Gx
(_)⟩ ∈ E(_) (5.7)

5.6. FINAL CONSTRUCTION: CURVE TREES WITH COMPRESSED POINTS123

where for each i∈ [ℓ], x′i is such that (x′i, . . .)←AsPermissibleE(_)(xi,yi), and (xi,yi)
are as in Equation (5.1). Third, leaves are required to be permissible.

Since the definition above makes a tree only out of permissible points13 this gives
a “decompression” that is unique. This in turn reduces the the complexity single-level
relations. We thus define a new optimized relation R(single-level⋆,(_)):

Definition 22 (Optimized single-level relation)

R(single-level⋆,(_)) :=


(

i,r,δ ,

⟨x⟩,y

)
:

C = ⟨[⟨x⟩] ,Gx
(_)⟩

+[r] ·H(_)

∧ (xi,y) ∈Pother(_)

∧ Ĉ = (xi,y)+ [δ] ·Hother(_)


Note that the constraint (xi,y) ∈Pother(_) only requires a check that (xi,y) ∈ Eother(_) in
addition to Uα,β (y) = 1.

Adapting Construction in Figure 5.2 to Compressed Points

Our final construction essentially remains the same as in Figure 5.2 with two excep-
tions.

• In order to accumulate a set (SelRerand.Accum) we generate a root through the
procedure derived from Definition 21 instead of the one for Definition 19.

• The proofs π(evn) and π(odd) are for slightly different relations: they prove/verify
relations for R(evn-levels) and R(odd-levels) but defined in terms of R(single-level⋆,(_))

from Definition 22 (instead of Definition 20).

This variant construction is also correct and secure:

Theorem 8 The variant of the construction of Figure 5.2 described in this section is
a transparent select-and-rerandomize primitive (under the same assumptions as in
Theorem 7).

The proof for theorem above follows the same blueprint as the one in Theorem 7.
Zero-knowledge/hiding is trivially untouched by the changes in the construction.
Binding is clearly still guaranteed since the relation we prove (R(single-level⋆,(_))) is now
stricter than the one in R(single-level,(_)). Observing correctness only requires observing
that a variant of Lemma 9 also holds (easily) for definition Definition 21.

13In case of our anonymous cryptocurrency application, this is enforced by the network of block
validators: as a condition for a transaction being valid.

124
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

5.7 VCash: Transparent and Efficient Anonymous
Payment System

In this section we informally describe our anonymous payment system, which we dub
VCash. The techniques and model here follow mostly prior work.

Model

A formal description of our model is in the appendix in ??. The ideal functionality
in the appendix describes the simple expected behavior of an anonymous payment
system: parties hold values; they can transfer part of these values to other parties; an
adversary can observe transactions but it cannot tamper them or learn anything about
the sender/receiver/value of the transaction. This functionality, in particular, supports
the largest possible anonymity set at every transaction like ZCash.

A high-level view of our protocol

The flow of our protocol roughly follows known blueprints. We refer the reader to, e.g.,
the technical overview and Section 3 in [CHA21, CHA22c] for further background.

Intuition about our construction. At any given moment in time, each party holds a
certain number of coins14. Coins are the fundamental concept in a transaction. During
a transaction we pour a certain amount from user to user by using two (unspent) input
coins and producing two new output coins.

Each user is also holding a public state (the ledger L) roughly containing all
the transfers occurred so far. Through the state any user can verify the validity of
each transfer. In addition to the public state, users hold a private state containing
information as: the aforementioned auxiliary information to spend their coins, signing
keys, etc.

In order to implement an anonymous payment system we thus require four algo-
rithms that are run locally by each party in the system:

Setup The setup algorithm produces the initial parameters of the system. We empha-
size that it does not require being run by a trusted setup.

Pour A sender S can “pour” the value of two input coins into two new output coins
nullifying the input ones. The recipients of the two new coins can be distinct. It
is possible for S itself to be one or both of the recipients. We require that the
total value of input and output coins is the same. The algorithm Pour has two
outputs: a new transaction that is publicly broadcasted and a private auxiliary
opening that is sent to the respective recipients of the new output coins.

Verify A verifying algorithm allows any party to check a transaction is valid. It takes
as a input the public parameters and the public state observed so far.

14“Holding” a coin requires knowing a certain secret key associated to the user. In this section we
ignore the aspect of registering with a new key to the system, but we stress it is straightforward to add.

5.7. VCASH: TRANSPARENT AND EFFICIENT ANONYMOUS PAYMENT
SYSTEM 125

Process By a processing algorithm parties can update their public and private state
after observing a transaction.

Our protocol in more detail

We describe our protocol in Figure 5.5 and in the rest of this section.
A transaction consist of the creation of output coins from input coins. A coin

roughly consists of a commitment to its amount and other information that ensures it
will be used only once and by its intended recipient. For a transaction to be valid it
must be the case that:

1. Output coins are in an appropriate non-negative range (we want to give money
and not take it in a transaction). This corresponds to the Mint in Figure 5.4.

2. Input coins “exist” and are valid themselves. This corresponds to the Spend in
Figure 5.4.

3. The total value of input and output coins is the same. This is handled by πbal in
Figure 5.5.

We use zero-knowledge proofs to ensure the above. The first and third property
can be ensured respectively by range proofs and homomorphic properties of Pedersen
commitments & proving knowledge of appropriate discrete logarithms. The second
property is where we use our select-and-rerandomize constructions from the previous
sections: all coins are stored in an accumulator (a Curve Tree) and whenever they aim
to spend an input coin, they can select-and-rerandomize it obtaining a rerandomized
version of that input coin. This is included in the transaction together with a proof
that it refers to the rerandomization of something existing in the accumulator.

Further details on our building blocks follow.

Breakdown of public parameters: • public parameters for SelRerand • urs (uniform
reference string) for zero-knowledge • generators

(
Gv,Gt , Ĥ

)
for Pedersen commit-

ments whose semantics we explain below.

Structure of a coin: A coin is a Pedersen commitment to: 1) the amount v transferred
through the coin; 2) the tag/nullifier t, i.e. the (rerandomized) public key of the
recipient. Hence each coin c is of the form c= [v] ·Gv +[t] ·Gt +[r] · Ĥ where r is the
randomness we use for masking the polynomial.

Additional cryptographic primitives:

• Digital signatures with rerandomizable keys (see, e.g., [FKM+16]). The key
property we require is that we can rerandomize a public key and correspondingly
update a signing key. We use this feature in Mint in Figure 5.4.

• Non-Interactive zero-knowledge for different relations:

126
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

– Relation Rdlog, which shows knowledge of discrete logarithm for given
generators for an input group element c. We use this relation to show zero-
balance among input and output coins and to show knowledge of values
in the input coins. Whenever we use relation Rdlog we also explicitly
describe with respect to what tuple of generators. For instance, if we write
Rdlog

(
Gt , Ĥ

)
it means that we are showing knowledge of (t,r) so that a

certain commitment equals [t] ·Gt +[r] · Ĥ. The last example is instructive
in one more way: that relation is equivalent to stating that the “transferred
value v” inside a certain commitment (a coin) is zero. We use this fact to
assert that the values of input and output coins is balanced overall.

– Relation R≥0, which shows knowledge of discrete logarithms for a coin
plus that the value of the coin is in a positive range. That is it shows
knowledge of (v, t,r) such that c= [v] ·Gv +[t] ·Gt +[r] · Ĥ ∧ v ∈ [0,264).

• We denote by HF a collision resistant hash function mapping group elements—
the public keys of the users—to the appropriate scalar field F. We use this hash
function to be able to commit to the public keys as tags. Notice that we do not
need to prove this hash function in zero-knowledge.

Other components of public state (i.e., the ledger):

• Set of coins Scoins (from which it is possible to compute the corresponding
Curve Tree root rtcoins)

• Set of seen “tags”. Tags are (rerandomized) public keys of recipients. These are
revealed every time an input coin is spent. We stress that they are unlinkable to
the actual input coins they refer to because of the select-and-rerandomize proof.

We describe setup and processing algorithm at a very high level since they are
almost immediate from the rest of the protocol. The setup algorithm generates all the
public parameters described above; it should also provide an initial distribution of
coins to users (the mechanism of this initial distribution is unimportant for our focus).
The processing algorithm consists in keeping the public state above up to date after
each (valid) transaction. It simply updates the set of coins with the new observed
output coins and the set of seen tags with those in the latest transaction.

Remark 9 (Optimizations) The construction in Figure 5.5 shows a separate proof
for each of the relations of interest. This is for clarity only. Our final construction
produces a single Bulletproof proof whenever possible, thus avoiding a linear over-
head in the number of relations. The final numbers are those stated in Section 5.8 and
consist of two Bulletproofs lying on two different curves.

Remark 10 (Full security through efficient PRF) The scheme in Figure 5.5 is a
slightly simplified version of our final protocol for didactic purposes. The simplifica-
tion has to do with how we generate new tags (G(j)

nll,out). The scheme in the figure, as it

5.8. IMPLEMENTATION AND EVALUATION 127

is, has an additional leakage: a party S sending a transaction tx to a party R can
learn when R will spend the coins received in tx (but not to whom). Only sender S can
infer this. Additionally the scheme suffers from “Faerie’s Gold Attack”, which enables
an adversary to create two distinct transactions of which only one can be spent by
the honest receiver. Our final scheme mitigates both of these issues using a PRF. This
solution is similar to that used in Zcash. Differently than Zcash we can exploit a
more efficient way to prove the PRF computation—thanks to our choice of PRF and
groups. However, in order to avoid bloating the circuit to be proven in ZK, we use
a “commit-and-prove friendly” PRF with bounded-query security. The fact that we
need to require this bound beforehand is not a problem since we can use a bound on
the number of transactions we expect in the system (e.g. a very conservative bound of
232 transactions per-user). We give a concrete instantiation based on Diffie-Hellman
Inversion Assumption (DHI) using a PRF is based upon Dodis and Yampolskiy [DY05]
where PRFK(x) =

[
(K + x)−1

]
·G. Security of this extensions follows from the well-

studied Diffie-Hellman Inversion (DHI) assumption [MSK02]. More details are in ??.
NB: differently from [DY05], our instantiation group is pairing-free and thus we can
instead obtain an evaluation proof through an additional opening of a group element
in Bulletproof (alternatively one could use a Sigma-protocol).

5.8 Implementation and Evaluation

We implement select-and-rerandomize and VCash in Rust on top of the dalek Bul-
letproofs library15. The Bulletproof implementation has been extended with support
for vector commitmentsand elliptic curves implemented using the arkworks16 curve
traits.
CODE. All our code is available and released as open source at

https://github.com/simonkamp/curve-trees.

EXPERIMENTAL SETTING AND INSTANTIATIONS. Our benchmarks were run on a
C6i.2xlarge17 instance with 8 vCPUs, which corresponds to 4 physical cores on an
Intel Xeon 8375C processor with 2.9 GHz clock speed18. When possible (and unless
otherwise explicitly specified) we have benchmarked alternative schemes on the same
hardware. We use Curve Trees of even depth D in our evaluation and instantiate the
two underlying elliptic curves through both those in the Pasta cycle [Hop20] and the
secp256k1 / secq256k1 cycle. We use Schnorr signatures for VCash.

15https://github.com/dalek-cryptography/bulletproofs
16https://github.com/arkworks-rs
17https://aws.amazon.com/ec2/instance-types/c6i/
18While we tabulate only results for this architecture, we also performed benchmarks on a common

laptop.

https://github.com/simonkamp/curve-trees
https://github.com/dalek-cryptography/bulletproofs
https://github.com/arkworks-rs
https://aws.amazon.com/ec2/instance-types/c6i/

128
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

Spend
(
aux

(j)
in

)
// Reconstruct input coin

Parse aux
(j)
in as

(
v(j)

in ,S
(j)
rr ,r(j)

in

)
G(j)

nll,in←HF
(
S

(j)
rr

)
·Gt // reconstruct input tag

c
(j)
in ←

[
v(j)

in

]
·Gv +G(j)

nll,in +
[
r(j)

in

]
· Ĥ// reconstruct coin

// Select-and-Rerandomize input coin(
c
(j)
rr ,πSR(j),r(j)

rr

)
← SelRerand.P

(
ppSR,Scoins,c

(j)
in

)
// Prove knowledge of opening of input coin

π
(j)
spnd← ZK.Prove

(
urs,Rdlog

(
Gv, Ĥ

)
,c

(j)
rr −G(j)

nll,in;aux(j)
in ,r(j)

rr

)
Mint

(
R(j),v(j)

out

)
r(j)
out

$←− F// to mask coin

r(j)
pk

$←− F// to rerandomize pk

R
(j)
rr ←

[
r(j)

pk

]
·R(j)// rerandomized pk

G(j)
nll,out←HF

(
R

(j)
rr

)
·Gt // make output tag

c
(j)
out←

[
v(j)

out

]
·Gv +G(j)

nll,out +
[
r(j)

out

]
· Ĥ// make coin

aux
(j)
out←

(
v(j)

out,R
(j)
rr ,r(j)

out

)
// opening of coin

// Proves value of coin ≥ 0

π
(j)
≥0 ← ZK.Prove

(
urs,R≥0,c

(j)
out;aux

(j)
out,R

(j)
)

Figure 5.4: Auxiliary algorithms for algorithm Pour. We assume all variables have
the same scope as Pour.

Zero-Knowledge for Set-Membership

The results in Table 5.1 summarize the efficiency of our select and rerandomize
scheme (Section 5.3) using the final construction in Section 5.6 for different set sizes—
modest, medium and large. Given a choice of parameters—the branching factor ℓ and
(even) depth D—the total number of constraints to prove in zero-knowledge amounts
to D(912+ ℓ−1) (half per even/odd layers respectively). We heuristically choose the
set size (|S| = ℓD) in order to optimize the running time by obtaining a number of
constraints which “does not overflow” powers of two if possible. This is illustrated by
the benchmarks for sets of size 232 and 240: despite the gap between the set sizes they
show similar performance.

If only proofs of membership of field elements are needed, these can be achieved
by using the select and rerandomize scheme on vector commitments of ℓ′ elements

5.8. IMPLEMENTATION AND EVALUATION 129

Pour

(
pp,stS ,

(
S (j),aux

(j)
in ,R(j),v(j)

out

)
j∈[2]

)
// Create output coins

for j ∈ [2] :

Mint
(
R(j),v(j)

out

)
// Show we are using existing coins

for j ∈ [2] :

Spend
(
aux

(j)
in

)
// Show that v(1)in + v(2)in = v(1)out + v(2)out

cbal← c
(1)
out + c

(2)
out− c

(1)
rr − c

(2)
rr

πbal← ZK.Prove
(
urs,Rdlog

(
Gt , Ĥ

)
,cbal;

aux
(j)
in ,r(j)

rr ,aux
(j)
out,R

(j))
tx :=

((
S

(j)
rr ,c

(j)
rr ,c

(j)
out,S

(j)
rr

)
j∈[2]

,proofs π⋆

)
Double sign tx with sk-s for S (1) and S (2)

Privately send
(
aux

(j)
out

)
j∈[2]

;Broadcast tx

Vfy

(
pp, tx :=

((
S

(j)
rr ,c

(j)
rr ,c

(j)
out,S

(j)
rr

)
j∈[2]

,proofs π⋆

)
,L

)
for j ∈ [2] :

check SelRerand.Vfy
(
ppSR, rtcoins,c

(j)
rr ,π

(j)
SR

)
G(j)

nll,in←HF
(
S

(j)
rr

)
·Gt // reconstruct tags

Reject if G(j)
nll,in has been seen before already

check ZK.Vfy
(
urs,Rdlog

(
Gv, Ĥ

)
,c

(j)
rr −G(j)

nll,in,π
(j)
spnd

)
check ZK.Vfy

(
urs,R≥0,c

(j)
out,π

(j)
≥0

)
cbal← c

(1)
out + c

(2)
out− c

(1)
rr − c

(2)
rr

Check ZK.Vfy
(
urs,Rdlog

(
Gt , Ĥ

)
,cbal,πbal

)
Verify signatures on tx with public keys for S

(j)
rr -s

Accept iff all checks above succeed

Figure 5.5: Pour and Verification algorithms in VCash.

130
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

Curves (D, ℓ)
Set
size

Constraints
Proof

size (kb)
Proving
time (s)

Verification
time (ms)

Amort. batch verification
time (ms)

(2,1024) 220 3870 2.6 0.88 23.17 1.44
Pasta (4,256) 232 4668 2.9 1.71 39.63 2.35

(4,1024) 240 7740 2.9 1.74 40.41 2.73
(2,1024) 220 3870 2.6 0.97 26.81 1.61

Secp/Secq (4,256) 232 4668 2.9 1.89 47.39 2.64
(4,1024) 240 7740 2.9 1.92 48.40 3.02

Table 5.1: Benchmarks of the select and rerandomize primitive with depth D and
branching factor ℓ. The amortized batch verification time refers to a batch of 100
proofs.

Scheme
Con-
straints

Prove
(s)

Verify
(ms)

Verify
batch (ms)

Curve Trees (Pasta) 3565 1.5 31 1.8
Curve Trees (Secp/Secq) 3565 1.7 37 2
Poseidon 4:1 4515 8.8 651 -
Poseidon 8:1 4180 8.5 825 -

Table 5.2: Benchmarks of accumulators over sets of size 230 based respectively on
curves trees and on Merkle trees with Poseidon (??). Batch verification time is for the
amortized time for a batch of size 100.

obtaining a scheme which uses only D(912+ ℓ− 1)+ (ℓ′− 1) constraints to show
membership of a set with ℓD · ℓ′ elements. Using the parameters D= 3, ℓ= 256, and
ℓ′ = 64 we get a direct comparison (|S| = 230) with [GKR+21] in which they use
bulletproofs to show membership in Poseidon based Merkle trees with 230 leaves
and ℓ= 2, 4, or 8. The best performing instances in [GKR+21] are using branching
factors of 4 and 8 on the ed25519 curve: one results in slightly fewer constraints and
faster proving time, while the other verifies faster. The results in Table 5.2 show that
the accumulator based on Curve Trees is > 5 times faster at proving and > 20 times
faster at verifying compared to the fastest instances of Poseidon-based Merkle trees.

VCash

Table 5.3 compares VCash with various anonymous payment systems. When used
for batch verification, VCash outperforms other schemes, sometimes by orders of
magnitude (for the same anonymity sets). Non-batched verification time is highly
competitive when compared to transparent constructions, but 10× slower than the
non-transparent Zcash Sapling (which mainly consists of a few pairing operations).
Orchard—the recent transparent version of Zcash based on Halo2 and Pasta (see
also ??—achieves a 5× faster verification time than VCash. We believe that basing
VCash on a Curve Tree using Halo2 would outperform Orchard. On the other hand
this would come at the price, as it is the case for Orchard, of not supporting arbitrary
2-cycles of curves (see Section 5.1). The transaction size in Orchard is roughly

5.8. IMPLEMENTATION AND EVALUATION 131

Anonymity
set size

Transparent
setup

Tx size
(kb)

Proving
time (S)

Verification
time (ms)

Amort. batch verification
time (ms)

Zcash Sapling 232 ✗ 2.8 2.38 7 -
Zcash Orchard 232 ✓ 7.6 1.77 15 -
Veksel Any ✗⋆ 5.3 0.44 61.88 -

210 ✓ 2.7 0.27† - 6.8†
Lelantus 214 ✓ 3.9 2.35† - 10.2†

216 ✓ 5.6 4.8† - 52†
Omniring 210 ✓ 1 ≈ 1.5‡ ≈ 130‡ -

220 ✓ 3.4 1.76 41.40 2.87
VCash (Pasta) 232 ✓ 4 3.43 78.40 4.98

240 ✓ 4 3.48 80.52 5.77
220 ✓ 3.4 1.95 48.27 3.15

VCash (Secp/Secq) 232 ✓ 4 3.80 90.40 5.60
240 ✓ 4 3.86 91.97 6.32

Table 5.3: Benchmarks of VCash against other anonymous payment schemes. The
VCash schemes are instantiated with Curve Trees with the corresponding set size in
Table 5.1. The batch verification time is measured as the cost per proof of verifying a
batch of 100 proofs. If batch verification is empty, it means it is not available as an
option for that specific construction or not possible to estimate from the related work.
⋆ Veksel only needs setup if using accumulators instantiated with RSA (which provide the smallest tx

size), but not for zero-knowledge.

† Lelantus was benchmarked on an Intel i7-4870HQ (4 cores, 2.5GHz).[Jiv19]

‡ Omniring was benchmarked on an Intel i7-7600U (2 cores, 2.8GHz).[LRR+19].

twice as large as in VCash. The only other better transaction size among transparent
constructions is that of Omniring (we estimate VCash to be less than 2× larger for
same anonymity sets).

Concretely, a “pour” in VCash for two inputs/two outputs and anonymity sets
of 232 (like in Zcash) our confidential transactions (Vcash) require participants to
compute/verify two Bulletproofs proofs of < 5000 constraints each. We can contrast
that to another approach supporting large anonymity sets, Zcash Sapling, compared
to which our circuit for “spend” transaction is 20x smaller. The cost of the set
membership proofs dominate the combined transaction circuit. For instance the
VCash combined circuit (over both fields) has 9464 constraints of which 9336 are
used for the proof of membership and the Orchard action circuit has 211 rows and 40
columns while the membership by itself uses 211 rows and 35 columns.

We remark that, in the table, we only compare to approaches with concretely
small transaction size (of a few kilobytes for large enough anonymity sets). Solutions
not in the table because of their large transaction size include: the original approach
in Zerocoin [MGGR13] (45KB for full security [CHA22c]); Quisquis [FMMO19]
(13KB for |S|= 24); Monero [AJ18] (whose transaction grows linearly with |S| and is
already at 1.3KB for |S|< 24).

132
CHAPTER 5. CURVE TREES: PRACTICAL AND TRANSPARENT

ZERO-KNOWLEDGE ACCUMULATORS

5.9 Accumulators

For reference and to make easier a comparison to our primitive in Definition 18, we
provide the more standard definition of accumulators [BBF19].

Definition 23 (Accumulator scheme) An accumulator scheme Acc over universe
Uλ (Acc) (for a security parameter λ) consists of PPT algorithms Acc = (Setup,
Accum,PrvMem,VfyMem) with the following syntax:

Setup(1λ)→ pp generates public parameters pp.

Accum(pp,S)→ A deterministically computes accumulator A for set S⊆Uλ (Acc).

PrvMem(pp,S,x)→W computes witness W that proves x is in accumulated set S.

VfyMem(pp,A,x,W)→ b ∈ {0,1} verifies through witness whether x is in the set
accumulated in A. We do not require parameter x to be in Uλ (Acc) from the
syntax.

Correctness: For any set S = {vi}i, j∗ ∈ [|S|] the following holds

Pr

 ppacc← Acc.Setup(1λ)

A = Acc.Accum(pp,S)

π ← Acc.PrvMem(ppacc,S,v j∗)

:

= 1

Security: For any PPT adversary A the following holds:

Pr

 pp← Acc.Setup(1λ)

(S,v′,π)←A (ppacc)

A = Acc.Accum(pp,S)

:
Acc.VfyMem(pp,A,v′,π)

∧ v′ ̸∈ S


≤ negl(λ)

Chapter 6

Secure Multiparty Computation
with Free Branching

Aarushi Goel, Mathias Hall-Andersen, Aditya Hedge, Abhishek Jain.

Orignally published at Eurocrypt 2022.

6.1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87, CCD88, BGW88] is an in-
teractive protocol that allows a group of mutually distrusting parties to jointly compute
a function over their private inputs without revealing anything beyond the output of the
function. Over the years, significant progress has been made towards improving the
efficiency of MPC protocols [CGH+18, WJS+19, GS20, GSY21, BGJK21, GPS21,
KOS16, HOSS18, CDE+18, GLO+21, DPSZ12] to make them practically viable.

While a wide variety of techniques for efficiency improvements have been devel-
oped in different settings based on the corruption threshold, communication model or
security guarantee, a common aspect of most modern efficient protocols in all of these
settings is that they rely on a circuit representation of the function. A limitation of
such protocols, however, is that their total communication complexity is at least linear
in the size of the circuit. Known techniques for getting sub-linear communication
in the circuit size rely on computationally heavy tools such as fully-homomorphic
encryption (FHE) [Gen09] or homomorphic secret sharing (HSS) [BGI16]. While
there have been recent advancements in improving the efficiency of these methods,
they are still far from being practical in many use cases.

As a result, the efficiency of existing efficient protocols is highly dependent on
how succinctly a function can be represented using circuits. This is clearly not ideal,
since circuits are often not the most efficient way of representing many functions. A
common example of such functions are ones that include some kind of conditional
control flow instructions. When evaluating such functions, a circuit-based MPC will
incur communication dependent on the size of the entire circuit, while in reality we

133

134
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

only need to evaluate the “active” path (i.e., the path that is actually executed based
on the conditional) in the circuit.

It is therefore useful to design efficient MPC protocols for useful classes of
functions, where the total communication between the parties only depends on the
“active” parts, rather than the entire circuit.

MPC for Conditional Branches. In this work, we focus on one such class of
functions, namely, ones that contain conditional branches. As discussed in [HKP21a],
a real world example of an application that consists of conditional branches is where a
set of servers collectively provide k services and the clients can pay and avail any one
of their services (depending on their requirements), without revealing to the servers
which service they are availing. Similarly, control flow instructions are also integral
to any kind of programming and as observed in [HK21], many kinds of control flow
instructions (including repeated and/or nested loops) can be refactored into conditional
branches. Such refactorings often result in a large number of conditional branches.
For such functions, designing MPC protocols where the total communication only
depends on the size of the active branch is very useful.

Recently, in a sequence of works [HK20a, HK21], Heath and Kolesnikov made
progress in this direction in the two-party setting. They design garbled circuit based
two-party semi-honest protocols for evaluating functions with conditional branches,
where the total communication only depends on the size of the largest branch. In the
multiparty setting, however, no such protocols are currently known. The recent works
of [HKP20, HKP21b] design MPC for conditional branches where they reduce the
number of public-key operations required to evaluate conditional branches; however,
the total communication in their protocols still depends on the size of all branches.
Furthermore, all these protocols only work for Boolean circuits.

Given this state of the art, we consider the following question in this work:

Does there exist an efficient multiparty protocol for securely computing conditional
branches, where the total communication only depends on the size of the largest

branch?

We remark that all of the above mentioned prior works only focus on the semi-
honest setting. The task of designing analogous maliciously-secure protocols remains
unexplored (both in the two-party and multi-party settings). In this work, we also
consider this question.

Our Contributions

We design the first multiparty computation protocols for conditional branches, where
the communication complexity only depends on the size of the largest branch. Our
protocols can support arbitrary number of parties and corruptions. We present both
constant and non-constant round variants.

I. Non-Constant Round Branching MPC. Our first contribution is a semi-honest
MPC for conditional branches, where the communication complexity only depends

6.1. INTRODUCTION 135

on the size of the largest branch. This protocol is capable of computing arithmetic
circuits over any field or ring. The round complexity of this protocol depends on the
depth of the circuit.

We present this protocol as a generic compiler that can transform a large class
of admissible1 MPC protocols into ones for conditional branches that achieve the
aforementioned communication complexity. Several existing concretely efficient
protocols including MASCOT [KOS16], SPDZ2k [CDE+18], Overdrive [KPR18],
TinyOT [FKOS15] and [HOSS18], [CDN01] can be used with this compiler.

In particular, by instantiating our compiler with a semi-honest admissible (dishonest-
majority) MPC protocol with communication complexity CC(|C|) (where C is the
circuit being evaluated), we obtain the following result:

Informal Theorem 3 Let λ be the security parameter. There exists a semi-honest se-
cure MPC for evaluating conditional branches, that can tolerate arbitrary corruptions
and that achieves communication complexity of O(CC(|Cmax|)+ n2kλ + n2|Cmax|),
where k is the number of branches in the conditional.

We also implement this protocol to test its concrete efficiency and compare it to
state-of-the-art MPC protocols. More details are provided later in this section.

Extension to Malicious Security. We also present an extension of this protocol to
the case of malicious adversaries. Asymptotically, its communication complexity is
similar to the semi-honest protocol, except that it incurs a multiplicative overhead
dependent on a statistical security parameter.

We view this construction as initial evidence that efficient branching MPC with
malicious security is possible. However, we believe that there is significant scope for
future improvements towards achieving good concrete efficiency.

II. Constant Round Branching MPC. Our next contribution is a constant round
MPC for conditional branches, where the communication complexity only depends
on the size of the largest branch. This protocol is based on a multiparty garbling
approach [BMR90] and only supports boolean circuits.

We also present this protocol in the form of a general compiler. Namely, given a
MPC protocol with communication complexity CC(|C|) for evaluating a circuit C, we
get the following result:

Informal Theorem 4 Let λ be the security parameter. There exists a constant-round,
semi-honest secure MPC for evaluating conditional branches (represented as Boolean
circuits), that can tolerate arbitrary corruptions and that achieves communication com-
plexity of O(|CC(λ |Cmax|)+n2kλ +n2λ |Cmax|), where k is the number of branches
in the conditional.

1We require the underlying MPC to be such that it evaluates the circuit in a gate-by-gate manner
and maintains an invariant that for every intermediate wire in the circuit, the parties collectively hold a
sharing of the value induced on that wire during evaluation.

136
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

To obtain both of the above results, we adopt a fundamentally different approach as
compared to prior works [HK20a, HKP20, HK21, HKP21b] in this area. Specifically,
prior works require the parties to locally evaluate all the branches. In contrast, in
our approach, the parties select the “active” branch and only execute that branch. A
detailed overview of our approach can be found in the next section.

III. Comparison and Performance Evaluation. To gauge practicality, we implement
our non-constant round semi-honest compiler and instantiate it using two kinds of
protocols:

• Quadratic Dependence on the Number of Parties: MP-SPDZ is a common MPC
library that contains implementations of the SPDZ protocol [DPSZ12] and its
descendants. All of the protocols in this library have total communication with
quadratic dependence on the number of parties. We instatiate our compiler with
an implementation of MASCOT [KOS16] from this library without modifica-
tion. Our code is agnostic to which protocol the MPC library is configured;
this helps demonstrates that our techniques are generic and block-box. We
run benchmarks over simulated LAN and WAN settings. We show that our
compiled protocol outperforms naïvely evaluating all the branches in parallel
using MASCOT for as few as 8 branches.

• Linear Dependence on the Number of Parties: We implement an optimized
variant of our compiler that incurs a linear additive overhead in the number
of parties, instead of a quadratic overhead. We then test the efficiency of our
compiler when instantiated with the CDN protocol [CDN01], which only has a
linear dependence on the number of parties. For this, we first implement the
CDN protocol. To the best of our knowledge, this is the first known implementa-
tion of CDN. Similar to the previous case, we show that our compiled protocol
(instantiated using CDN) outperforms naïvely evaluating all the branches in
parallel using CDN for 8 branches.

6.2 Technical Overview

Background. All recent works [HK20a, HKP20, HK21, HKP21b] in this area are
based on the same principal approach – the parties evaluate all branches, albeit, only
the “active” branch is evaluated on real inputs, while the remaining branches are all
evaluated on fake/garbage values.

For instance, in the two-party setting, [HK20a, HK21], which adopt a garbled
circuit based approach, one of the parties garbles all the k branches. It then “stacks”
these garblings into a compressed form that is proportional to the length of the largest
branch in the circuit. Using some additional information sent by the garbler, the
evaluator is able to reconstruct k different garbled circuits, only one of which is a
valid garbling of the “active” branch, and the remaining are random strings (or some
garbage material). Unaware of the active branch, the evaluator evaluates the k garbled

6.2. TECHNICAL OVERVIEW 137

circuits w.r.t. different branches to obtain k different output labels. These output labels
are then filtered with the help of a “multiplexer” to obtain the correct output. Overall,
this approach reduces the communication to only depend on the size of the largest
branch (the computation complexity, however, is still large).

In the multiparty setting, both [HKP20, HKP21b], follow the same principal
approach. These protocols have separate preprocessing and online phases. They
require parties to evaluate all branches (including the inactive ones) in the online
phase over 0 or some random values and leverage this fact to get savings in the
preprocessing phase. As a result, communication in the preprocessing phase only
depends on the size of one branch, but the communication in the online phase still
depends on the size of all the branches.

Indeed, it is unclear how to extend the stacked garbling approach used in [HK20a,
HK21] to get similar savings in communication in the multiparty setting. Recall
that the garbler in stacked garbling is required to garble all branches and hence its
computation depends on the size of all branches. This means that naive approaches
that involve distributing the role of the garbler amongst multiple parties are a non-
starter as they will incur communication proportional to the size of all branches. In
order to design a multiparty protocol with similar communication savings as in stacked
garbling, we therefore adopt a fundamentally different approach.

Our Approach. In our approach, the parties select which branch to execute in a
“privacy-preserving” manner and only execute that branch. To facilitate this private
selection, both of our constructions (in the non-constant round and constant-round
settings) employ a common tool – a variant of oblivious linear evaluation that we refer
to as oblivious inner product (OIP). In particular, our protocols make use of OIPs
with (small) constant rate. We show that such OIPs can be easily constructed using
low-rate linearly homomorphic encryption schemes, which are known from a variety
of assumptions [FV12, CL15, DJ01, PVW08].

In the sequel, we first describe the main ideas underlying our non-constant round
constructions. We then proceed to describe our constant-round construction.

Non-Constant Round Branching MPC

We start with the observation that the problem of computing conditional branches
bears some similarities to the problem of private function evaluation (PFE) [KM11,
MS13, MSS14]. Recall that in PFE, one party has the function and the remaining
parties provide inputs. This, in some sense is reminiscent of the problem that we
have at hand, albeit with some differences. In particular, in our case, while none of
the parties actually knows which function/branch is “active”, they all know the set
that this branch belongs to. Moreover, the parties collectively hold information about
which of these functions to evaluate. This can be viewed as a distributed variant of
PFE. In light of this observation, we build upon some ideas previously used in the
PFE literature.

138
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Private Function Evaluation. In PFE, the function is only known to one of the parties
(say party P1). The security requirements in standard PFE are very similar to that
in MPC, with the only additional requirement that the function must remain hidden
from all other parties. To achieve this, Mohassel and Sadeghian [MS13] observe that
in order to hide a function that is represented in the form of a circuit, there are two
components that need to remain hidden – (1) The wire-configuration of the circuit,
i.e., how the gates connect with each other, and (2) the function (i.e., addition or
multiplication) implemented by each gate in the circuit. They propose a strategy to
conceal the above components of a circuit in order to achieve function privacy (without
relying on universal circuits). In particular, they start with MPC protocols that work
over some kind of secret shares (additive/threshold/authenticated) and evaluate any
given circuit in a gate-by-gate manner. These protocols maintain the invariant that for
every intermediate wire in the circuit, all parties hold a sharing of the value induced
on that wire during evaluation. Many concretely efficient protocols such as [KOS16,
HOSS18, CDE+18, GLO+21, DPSZ12], satisfy these requirements. [MS13] propose
the following modifications to such MPC protocols to obtain a PFE protocol:

1. Hiding Wire Configuration: Each intermediate wire in the circuit has two end
points – (1) one is the source gate, for which it acts as the outgoing wire and
(2) the other is the destination gate, for which it acts as the incoming wire.
As discussed earlier, for hiding the wire configuration, we need to hide the
gate connections, i.e., we want to hide the mapping between the source and
destination of each wire in the circuit. For this, [MS13] assign two unique
labels to each wire w. One is an outgoing label based on its source gate and
second is an incoming label based on whether it acts as left or right input wire
to its destination gate. Let π denote the mapping between these incoming and
outgoing labels, i.e., let π(i) = j denote that a wire that has incoming label i
has an outgoing label j. In PFE, this mapping π is only known to the function
holding party.

In order to hide this mapping, [MS13] devise a mechanism to mask the outputs
value of each gate and unmask them based on π when this value is used for
evaluating the destination gate of this wire. This is executed by sampling an
input mask and an output mask for every wire in the circuit. Let in1, . . . , inW

and out1, . . . ,outW be the set of these input and output masks, where W is the
total number of wires in the circuit. In the preprocessing phase, with the help
of the function holding party and the underlying MPC, the parties compute
∆w = inw−outπ(w) for every w ∈ [W]. These ∆w values are revealed to function
holding party in the clear. This processing information helps the parties in
using appropriately permuted input and output masks to mask and unmask wire
values during evaluation in the online phase. In more detail, the online phase
proceeds as follows:

• Upon evaluating each gate g, the parties use output masks to mask all
the outgoing wires of the gate. Let the outgoing wires have labels c and

6.2. TECHNICAL OVERVIEW 139

d respectively, and let uc and ud denote these masked outputs. These
masked outputs are revealed to all parties in the clear.

• For evaluating a particular gate g, where the two input wires have incoming
wire labels a and b, the function holding party computes A = uπ(a)+∆a

and B = uπ(b)+∆b and sends it to all the parties. The parties subtract their
shares of ina and ∈b from these values to get a sharing of the actual values
on which to evaluate gate g.

2. Hiding Gate Functions: This is relatively easier. Assume that our arithmetic
circuit representation of the function only consists of addition and multiplication
gates, let typeg = 0 (and typeg = 1 resp.) denote that gate g is an addition gate
(and multiplication gate resp.). For each gate g with incoming wires a and b,
we can use the underlying MPC to compute both shares of a+b and a ·b. The
function holding party P1 can secret share typeg using the underlying MPC and
the parties can then choose between shares of a+b and a ·b by computing the
following using the underlying MPC:

(1− [typeg])([a+b])+ [typeg]([a ·b]),

where we denote [x] as a sharing of a value x using the secret sharing scheme
used by the underlying MPC. This allows the parties to evaluate the correct
function, without revealing it.

Our Semi-Honest Protocol. In our setting, the parties know the description of all the
branches in the conditional and have a secret sharing of the index of the active branch.
In order to hide the identity of the active branch, similar to the above approach, we
need to hide both the wire configuration and the gate functions of the active branch.
We start by listing the barriers in directly adapting the above approach to our setting
and then proceed to discuss how we resolve them.

• In the preprocessing phase, computing ∆ requires the function holding party to
input π to the underlying MPC. In our setting, no party knows the exact value
of π .

• In the online phase, A and B values are computed locally by the function holding
party in PFE since it already knows the mapping π . This is again a problem in
our setting.

• Finally, in order to hide the gate functions in the online phase, the value of each
typeg secret shared by the function holding party. But as above, neither party in
our setting knows this value.

In order to overcome the above barriers, we crucially rely on the fact that in our setting,
while no single party knows the function (or the mapping π), they all know the set
that the function belongs to. In other words, given a set of k branches C1, . . . ,Ck, all
the parties can locally compute the mappings π1, . . . ,πk corresponding to each branch.

140
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Moreover, the parties also have a secret sharing of the index of the active branch.
Let α be the index of the active branch. Our first idea towards resolving the above
barriers to is to somehow allow the parties combine their shares of α with π1, . . . ,πk
to get a sharing of πα . However, since the size of π1, . . . ,πk depends on the size of all
branches, a naive implementation of this computation will incur communication that
depends on the size of π1, . . . ,πk.

We get around this by using a new variant of oblivious linear evaluation, which
we refer to as oblivious inner product. We now outline our main ideas:

• Sharing of α: We work with a unary representation of the index α . In other
words, we assume each party have k secret shares, where the α th share is a
sharing of 1, while all others are sharings of 0s. Let these shares be denoted by
[b1], . . . , [bk]

• Input/Output Masks: In the preprocessing phase, we use the underlying
MPC to sample random input and output masks in1, . . . , inW and out1, . . . ,outW ,
where W is the number of wires in the largest branch. Each party, now locally
permutes its shares of input masks based on the k mappings π1, . . . ,πk. In more
detail, given sharings [out1], . . . , [outW], for each m∈ [k], the parties locally com-
pute sharings [outπm(1)], . . . , [outπm(W)]. Lets denote each [outπm(1)], . . . , [outπm(W)]

by [
−−−→
outπm]. If instead of computing shares of πα , we directly compute re-

randomized shares of [−−−→outπα
], then the parties can simply compute their shares

of ∆w values as follows

∀w ∈ [W], [∆w] = [inw]− [outπα (w)]

• Oblivious Inner Product: For computing re-randomized shares [−−−→outπα
], we

use a primitive called oblivious inner product (OIP). This is a protocol between
two-parties, called the sender and receiver and bears resemblance to oblivious
linear evaluation. The sender has inputs m0, . . . ,mk and the receiver has inputs
b1, . . . ,bk. At the end of the protocol, the receiver learns m0 +∑i∈[k] bimi and
the sender learns nothing.

We use this primitive and a GMW [GMW87] style approach to obtain shares
of −−−→outπα

as follows: for each pair of parties in the protocol, we run an instance
of OIP, where one party acts as the sender and the other acts as the receiver.
The inputs of the sender party to this OIP are its shares of [−−−→outπ1], . . . , [

−−−→
outπW]

and a random value X , while the inputs of the receiver are its shares of the
unary representation of α . At the end, each party Pi computes its share of −−−→outπα

by adding the outputs of each OIP instance where it acted as the receiver and
subtracting each X sampled in the OIP instance where it acted as the sender. It
is easy to see that these resulting shares are indeed shares of −−−→outπα

.

However, note that while the length of the output of each OIP in our case only
depends on the size of the largest branch, the length of sender inputs depends on
the size of all branches. Therefore, in order to design an MPC protocol where

6.2. TECHNICAL OVERVIEW 141

the overall communication is only proportional to the size of the largest branch,
we must use an OIP where the communication only depends on the length
of receiver inputs and the output, but is independent of the length of sender
inputs. We show that such OIPs can be constructed using linearly homomorphic
encryption with constant rate.

• Online Phase: Now that we have sharing of ∆w values that was computed using
the mapping π corresponding to the active branch, we can compute shares of
the A and B values as follows:

[A] = ∑
m∈[k]

[b1]uπ1(a)+[∆a] and [B] = ∑
m∈[k]

[b1]uπ1(b)+[∆b]

We note that most linearly homomorphic secret sharing schemes allow such
computations to be done non-interactively and hence it does not incur any
overhead in the communication complexity. Shares of typeg for every gate g
can also be computed in a similar manner.

Extension to Malicious Security. While the basic outline of our protocol remains
the same even in the malicious setting, we need to do a little more work to make
the above protocol secure against a malicious adversary. In particular, we need to
ensure that the inputs used by the parties in the OIP instances are consistent with
values/shares computed by them using the underlying MPC. For this we propose to
add the following consistency checks:

Receiver’s Input Consistency. We start by using an OIP that is secure against a
malicious reciever. In order to ensure that receiver uses valid sharings of the active
branch, we implement a kind of MAC check using the underlying MPC. In particular,
in the OIP execution, the sender samples k+1 random values and appends them to
its inputs. Now when the receiver computes the output of the OIP, it also learns an
inner product of these random values with its shares of the active branch (we refer
to this as the MAC value for this OIP). We now use the underlying MPC to compute
the exact same value. In particular, the sender sends the k+1 random values that it
sampled in the OIP as input to the underlying MPC, while the receiver sends the MAC
value learnt from the output of the OIP. We allow the underlying MPC to now check
if the MAC value indeed corresponds to an inner product of the receivers shares of
the active branch and the random values input by the sender. We note that since the
length of the receiver’s input is independent of the size of all branches, computing
this MAC value inside the MPC does not incur too much overhead.

Sender’s Input Consistency. Recall that the inputs of the sender to the OIP depend
on the size of all branches, and hence we cannot hope to use the kind of check that
we used for ensuring receiver consistency. Moreover, since the length of the sender
message is much shorter than the length of its inputs, we also cannot hope to use
an OIP with malicious sender security that can somehow extract the sender’s inputs.

142
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Therefore, instead we continue to work with an OIP that is secure against a semi-
honest sender but augment it with a cut-and-choose style approach. In particular, we
sample multiple copies of the masks and compute delta values using OIPs for each of
those copies. We also ask the sender to commit (using compressive commitments) to
the inputs and randomness used for computing each of its sender messages. At the
end of all OIP instantiations, we use the underlying MPC to sample a random subset
and reveal the shares of masks of all parties for that subset. The senders also send the
randomness used by them in the sender messages of this opened subset. Given this
information, the parties can verify if the senders behaved honestly and used consistent
shares in the opened instances. We use the remaining unopened instances to run
multiple copies of the online phase and take a majority to decide the final output. Due
to the use of cut-and-choose, the communication complexity of our maliciously secure
protocol is proportional to δ × the cost of computing the largest branch. Nevertheless,
as discussed in the introduction, this is still useful for conditionals with large number
of branches.

Constant Round (Semi-Honest) Protocol

Beaver, Micali, and Rogaway (BMR) [BMR90] proposed a general template for
constructing constant round MPC from existing generic non-constant round MPC.
The main observations underlying their technique were – (1) round complexity of
more generic non-constant round protocols depends on the depth of the function
being computed and (2) garbling [Yao86] a functionality/circuit is a constant depth
procedure.

The parties can leverage these observations to first execute a garbling phase,
where they compute a garbled circuit of the function (that they wished to evaluate)
using the non-constant round protocol. This phase will require a constant number of
rounds. Given this garbled circuit, they then proceed to the evaluation phase, where
each party locally evaluates the garbled circuit to learn the output. This phase requires
no interaction and hence the overall protocol runs in a constant number of rounds.

More concretely, in the garbling phase, the parties collectively sample two keys
kw,0,kw,1 for every wire w in the circuit. The garbled table for each gate g in the circuit
with incoming wires a,b and outgoing wire c, consists of the following four rows,
corresponding to α,β ∈ {0,1}:

ctα,β = PRFka,α
(g)+PRFkb,β

(g)+kc,g(α,β)

Branching MPC using BMR Template. The generality of the BMR approach
immediately makes it compatible with our non-constant round semi-honest protocol
(from Section 6.2). Indeed, in the garbling phase, parties can use that protocol to
compute a garbled circuit for the active branch. During the evaluation phase, however,
since the parties do not know which branch the garbled circuit corresponds to, they
can evaluate it for every branch and obtain the corresponding output wire labels.
Note that only the labels obtained by evaluating w.r.t. to the active branch actually

6.2. TECHNICAL OVERVIEW 143

correspond to a valid set of abels. Finally, via interaction, parties can determine the
output corresponding to the “valid” set of output labels. The complexity of this last
step is independent of the circuit size and only depends on the number of branches
times the output length.

While this yields a simple baseline constant round MPC for conditional branches,
it is highly inefficient. Since no party knows the keys ka,α ,kb,β in their entirety,
they must evaluate the PRF (on these keys) inside an MPC protocol. Since, the
circuit representations of PRF’s are typically massive, this protocol is unlikely to be
concretely efficient. As such, for concrete efficiency, we require a protocol that only
makes a black-box use of cryptography.

Towards Black-Box use of Cryptography. Damgård and Ishai [DI05] proposed a
variant of the above BMR template that enables parties to evaluate the PRF outside
the MPC, thereby only making a black-box use of cryptography.

Specifically, in their approach, each party Pi samples two keys ki
w,0,k

i
w,1 for every

wire w in the circuit. In other words, the cumulative keys associated with every wire
is a concatenation of all the parties’ keys. The garbled table for each gate g in the
circuit with incoming wires a,b and outgoing wire c, consists of the following 4 ·n
rows, corresponding to α,β ∈ {0,1} and i ∈ [n]:

ct i
α,β =

n⊕
m=1

PRFkm
a,α
(g∥i) +

n⊕
m=1

PRFkm
b,β
(g∥i)+ki

c,g(α,β)

It is easy to see that unlike the BMR approach, here the parties are only required
to evaluate the PRF on their own keys, which can be done locally and the resulting
PRF evaluation can be fed as input to the underlying MPC implementing the garbling
functionality.

In our setting, however, this approach posits a fundamental barrier. Recall that for
evaluating conditional branches, we want to garble the active branch without revealing
the index of the active branch. For this, while garbling any gate (say the jth gate), it is
imperative that the parties remain oblivious to both the functionality associated with it
and its incoming and outgoing wires. As a result, the parties are unaware of which
keys ki

a,α ,k
i
b,β to use for computing the corresponding ciphertexts, and hence cannot

evaluate the PRF on those keys locally. A natural approach to overcome this problem
is to perform this evaluation within an MPC; however, we are then back to the realm
of non-black-box use of cryptography. As such it is unclear how to directly adapt this
approach to our setting, while making a black-box use of cryptography.

Garbling using Key-Homomorphic PRFs. To overcome the above barrier, we
explore the work of Ben-Efraim et al. [BLO17] who presented an alternative template
for multiparty garbling, using key-homomorphic PRFs. These are PRFs with the
following property: PRFk1

(m)+̃PRFk2
(m) = PRFk1 ·̃k2

(m), where +̃ and ·̃ are some
operations. As before, each party samples two keys for every wire in the circuit and
given such a PRF, the parties the compute each ciphertext as follows:

144
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

ctα,β = ∑̃m∈[n]

(
PRFkm

a,α
(g)+̃PRFkm

b,β
(g)
)
+̃
(
∏̃m∈[n]k

m
c,g(α,β)

)
It is easy to see that similar to the previous approach, each party here is only

required to evaluate the PRF on its own key, which can be done locally. At first, it
might seem that in our setting, the same problem (as before) still persists. Indeed, for
local PRF evaluation, the parties are required to know which key to use, which as
discussed earlier is not possible when the parties are required to obliviously garble
one of the conditional branches. However, we observe that homomorphism of the
PRF can be leveraged here to resolve this problem.

Lets assume that the parties start by ordering the gates and wires in every branch
in some canonical order. Now, when garbling the jth gate of the active branch, they
must choose the appropriate keys from all the keys associated with the jth gate in every
branch. We also assume that the parties have a sharing of the unary representation
of the index associated with the active branch. The parties can now use multiple
instances of OIP (as in our non-constant round protocols) to obtain shares of the keys
associated with the two incoming wires of the jth gate in the active branch.

Consider a key homomorphic PRF where both +̃ and ·̃ are the same operation
associated with the reconstruction algorithm of the secret sharing scheme used in
the undelying MPC, i.e., [PRFk(m)] = PRF[k](m). This PRF can now be used along
with the above observation to compute a garbling of the active branch as follows: for
simplicity let’s assume that each branch is of the same size and has W wires. The
parties start by collectively sampling 2W keys. For garbling the jth gate, for each
α,β ∈ {0,1}, they use OIPs to compute shares [ka,α], [kb,β] and [kc,g(α,β)], where a,b
are the incoming and c is the outgoing wire of the jth gate in the active branch and g is
the function computed by this gate. Parties can now locally evaluate the PRF on these
shares and use the underlying MPC to compute shares of the ciphertexts as follows:

[ctα,β] = PRF[ka,α]
(j)+PRF[kb,β]

(j)+ [kc,g(α,β)]

Upon computing this garbled circuit for the active branch, similar to the baseline
solution, parties evaluate it w.r.t. all the branches and then run a “mini-MPC” to filter
out the valid labels and determine the final output.

Instantiating Key Homomorphic PRF. Most existing dishonest majority MPC proto-
cols [KOS16, HOSS18, CDE+18, GLO+21, DPSZ12] use additive secret sharing. To
use the above ideas with such protocols, we need an additively key-homomorphic PRF,
i.e., where PRFk1

(m)+PRFk2
(m) = PRFk1+k2

(m). Unfortunately, key homomorphic
PRFs are currently only known from the DDH assumption [NPR99, BLMR13] and
those PRFs do not achieve a similar additive homomorphism.

Ben-Efraim et al. [BLO17] observed that instead of a PRF, it suffices to use
a (decisional) ring LWE based random function here. This function is of the form:
F = fk : Rp→Rp| fk(a) = a · k+ e, where p= 2N+1 is a prime, N is a power of two,
Rp = Zp[X]/(XN +1) and a,k, and e are polynomials in the ring and the coefficients
of e come from a gaussian distribuition. Since a is public, it is easy to see that given

6.3. PRELIMINARIES 145

additive shares of the key k and error e, it is possible for the parties to locally compute
shares of the above function. As is standard when using LWE/RLWE, encrypting using
such a random function typically requires multiplying the message (before adding it to
the output of this function) with the size of the range from which the message comes
from. In the case of garbling, since both the message and keys come from the same
distribution, as shown in [BLO17], this requires choosing the parameters carefully
and additionally requires sampling the keys from a gaussian distribution. However,
since the parties only need to compute additive shares of these keys and errors, this
can be done easily by requiring the parties to sample their shares from appropriate
distributions. We defer more details to the technical sections.

6.3 Preliminaries

Secure Multiparty Computation

A secure multi-party computation protocol (MPC) is a protocol executed by n parties
P = {P1, · · · ,Pn} for a functionality F . We allow for parties to exchange messages
simultaneously. In every round, every party is allowed to exchange messages with
other parties using different communication channels, depending on the model. A
protocol is said to have k rounds if it proceeds in k distinct and interactive rounds.

Adversarial Behavior

One of the primary goals in MPC is to protect the honest parties against dishonest
behavior of the corrupted parties. This is usually modeled using a central adversarial
entity, that controls the set of corrupted parties and instructs them on how to operate.
That is, the adversary obtains the views of the corrupted parties, consisting of their
inputs, random tapes and incoming messages, and provides them with the messages
that they are to send in the execution of the protocol.

In this work we consider two types of adversaries. A semi-honest adversary is
"honest but curious" where it always follows the instructions of the protocol but might
try to learn extra information by analyzing the transcript of the protocol later. On
the other hand, a malicious adversary can deviate from the protocol and instruct the
corrupted parties to follow any arbitrary strategy.

We provide the basic definitions for secure multiparty computation according
to the real/ideal paradigm [Gol04]. Informally, a protocol is considered secure if
whatever an adversary can do in the real execution of protocol, can be done also in an
ideal computation, in which an uncorrupted trusted party assists the computation.

Security Definitions

Real World. The real world execution of a protocol Π = (P1, . . . ,Pn) begins by an
adversary A selecting any arbitrary subset of parties I to corrupt. The parties then
engage in an execution of a real n-party protocol Π. Throughout the execution of

146
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Π, the adversary A sends all messages on behalf of the corrupted parties, and may
follow an arbitrary polynomial-time strategy. In contrast, the honest parties follow
the instructions of Π. At the conclusion of the protocol, each honest party outputs all
the outputs it obtained in the computations. Malicious parties may output an arbitrary
PPT function of the view of A . This joint execution of Π under (A ,I) in the real
model, on input vector −→x = (x1, . . . ,xn), auxiliary input z and security parameter λ ,
denoted by REALΠ,I ,A (z)

(
1λ ,−→x

)
, is defined as the output vector of P1, . . . ,Pn and

A (z) resulting from this protocol interaction.

Ideal World. We now present standard definitions of ideal-model computations.
An ideal computation of an n-party functionality F on input −→x = (x1, . . . ,xn)

for parties (P1, . . . ,Pn) in the presence of an ideal-model adversary A controlling the
parties indexed by I ⊂ [n], proceeds via the following steps.

Sending inputs to trusted party: For each i /∈ I , Pi sends its input xi to the trusted
party. If i ∈I , the adversary may send to the trusted party any arbitrary input
for the corrupted party Pi. Let x′i be the value actually sent as the ith party’s
input.

Early abort: The adversary A can abort the computation by sending an abort message
to the trusted party. In case of such an abort, the trusted party sends ⊥ to all
parties and halts.

Trusted party answers adversary: The trusted party computes (y1, . . . ,yn)=F (x′1, . . . ,x
′
n)

and sends yi to party Pi for every i ∈I .

Late abort: The adversary A can abort the computation (after seeing the outputs of
corrupted parties) by sending an abort message to the trusted party. In case of
such abort, the trusted party sends ⊥ to all honest parties and halts. Otherwise,
the adversary sends a continue message to the trusted party.

Trusted party answers remaining parties: The trusted party sends yi to Pi for every
i /∈I .

Outputs: Honest parties always output the message received from the trusted party
and the corrupted parties output nothing. The adversary A outputs an arbitrary
function of the initial inputs xi s.t. i∈I , the messages received by the corrupted
parties from the trusted party and its auxiliary input.

Security Having defined the real and ideal models, we can now define security of
protocols according to the real/ideal paradigm.

Definition 24 Let F : ({0,1}∗)n→ ({0,1}∗)n be an n-party functionality and let Π

be a probabilistic polynomial-time protocol computing F . The protocol Π t-securely
computes F , if for every probabilistic polynomial-time real-model adversary A ,

6.4. OBLIVIOUS INNER PRODUCT 147

there exists a probabilistic polynomial-time simulator S for the ideal model, such
that for every I ⊂ [n] of size at most t, it holds that{
REALΠ,I ,A (z)

(
1λ ,−→x

)}
(−→x ,z)∈({0,1}∗)n+1,λ∈N

≈c

{
IDEALF ,I ,S (z)(1

λ ,−→x)
}
(−→x ,z)∈({0,1}∗)n+1,λ∈N

6.4 Oblivious Inner Product

In this section, we define a variant of oblivious linear evaluation (OLE), which we
refer to as oblivious inner product (OIP). OIP is a protocol between two parties, called
the sender and receiver respectively. The sender has inputs (−→m0, . . . ,

−→mk) in some
domain (say domm), and receiver has inputs (b1, . . . ,bk) in the same domain dom. At
the end of the protocol, the receiver should learn −→m0 +∑i∈[k] bi

−→mi and nothing more,
while the sender should learn nothing about the reciever inputs b1, . . . ,bk.

For our constructions, we consider two variants of OIP, a semi-honest version and
one that is secure against a malicious receiver. We now define the syntax and the
security guarantees of a two-message OIP protocol in the plain model. The definitions
can be naturally extended to the CRS model.

Definition 25 (Two-Message Oblivious Inner Product) A two-message oblivious
inner product between a receiver R and a sender S is defined by a tuple of 3 PPT
algorithms (OIPR,OIPS,OIPout). Let λ be the security parameter. The receiver com-
putes msgR,ρ as the evaluation of OIPR(1λ ,(b1, . . . ,bk)), where (b1, . . . ,bk) ∈ domk

is the receiver’s input. The receiver sends msgR to the sender. The sender then com-
putes msgS as the evaluation of OIPS(1λ ,msgR,(

−→m0, . . . ,
−→mk)), where (−→m0, . . . ,

−→mk) ∈
domm×(k+1) are sender’s inputs. The sender sends msgS to the receiver. Finally, the
receiver computes the output by evaluating OIPout(ρ,msgR,msgS).

A semi-honest OIP satisfies correctness, security against semi-honest receiver and
semi-honest sender, while the malicious variant satisfies correctness, security against
semi-honest sender and malicious receiver, which are defined as follows:

• Correctness: For each (−→m0, . . . ,
−→mk) ∈ domm×(k+1) and (b1, . . . ,bk) ∈ domk, the fol-

lowing holds

Pr

 (ρ,msgR)← OIPR

(
1λ ,(b1, . . . ,bk)

)
msgS← OIPS

(
1λ ,msgR,(

−→m0, . . . ,
−→mk)
) : OIPout (ρ,msgR,msgS) =

−→m0 +∑i∈[k] bi
−→mi

= 1

• Security Against Semi-Honest Sender: The following holds for any (b1, . . . ,bk) ∈
domk and (b′1, . . . ,b

′
k) ∈ domk, where ∃i ∈ [k] s.t. bi ̸= b′i

{
(msgR,ρ)← OIPR

(
1λ ,(b1, . . . ,bk)

)
: msgR

}
≈c
{
(msg′R,ρ

′)← OIPR

(
1λ ,(b′1, . . . ,b

′
k)
)

: msg′R
}
.

148
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

• Security Against Semi-Honest Receiver: For every PPT adversary A corrupt-
ing the receiver, there exists a PPT simulator SR such that for any choice of
(b1, . . . ,bk) ∈ domk and (−→m0, . . . ,

−→mk) ∈ domm×(k+1), the following holds:

OIPS

(
1λ ,msgR,(

−→m0, . . . ,
−→mk)
)
≈c SR(1λ ,ρ,msgR,

−→m0 + ∑
i∈[k]

bi
−→mi),

where (msgR,ρ)← OIPR(1λ ,(b1, . . . ,bk)).

• Security against a Malicious Receiver: For every PPT adversary A corrupting the
receiver, there exists a PPT simulator SR = (S 1

R ,S
2
R), such that for any choice of

(−→m0, . . . ,
−→mk) ∈ domm×(k+1), the following holds:∣∣∣∣Pr

[
IDEALSR,FOIP

(1λ ,−→m0, . . . ,
−→mk) = 1

]
−Pr

[
REALA ,OIP(1λ ,−→m0, . . . ,

−→mk) = 1
]∣∣∣∣≤ 1

2 +negl(λ).

Where experiments IDEALSR,FOIP
and REALA ,OIP are defined as follows:

Exp IDEALSR,FOIP

(
1λ ,−→m0, . . . ,

−→mk

)
:

• msgR←A (1λ)

• (b1, . . . ,bk)←S 1
R(1

λ ,msgR)

• out←FOIP(
−→m0, . . . ,

−→mk,b1, . . . ,bk)

• msgS←S 2
R(1

λ ,out,msgR)

• Output A (msgS)

Exp REALSR,FOIP

(
1λ ,−→m0, . . . ,

−→mk
)

:

• msgR←A (1λ)

• msgS←OIPS

(
1λ ,msgR,(

−→m0, . . . ,
−→mk)
)

• Output A (msgS)

We present a construction of such OIPs from constant rate linearly homomorphic
encryption in Section 6.9.

6.5 MPC Interface

As discussed in the introduction, all of our compilers make use of an underlying
secure computation protocol with certain properties. In this section, we describe the
properties that we want from these underlying protocols.

We model these requirements as a reactive functionality (denoted as Fmpc). At
a high level, we require secret sharing based MPC that evaluate a given circuit in a
gate-by-gate manner and maintain an invariant that the parties hold a secret sharing of
the values induced on each intermediate wire in the circuit. A formal description of
this reactive functionality appears in Figure 6.1.

For ease of notation, in our protocol descriptions, we shall let [varid] denote the
value stores by the functionality under (varid,a); and we will write [z] = [x] + [y]
as a shorthand for calling Add and [z] = [x] · [y] as a shorthand for calling Multiply.

6.5. MPC INTERFACE 149

And by abuse of notation, we will let varid denote the value, x, of the data item held
in location (varid,x). We use [x]i to denote the share of x given to party Pi in the
underlying MPC.

To the best of our knowledge, most secret sharing based protocols [KOS16,
HOSS18, CDE+18, DPSZ12, CDN01] securely implement this reactive functionality
in the presence of a malicious adversary who can corrupt arbitrary number of parties.
Moreover, most of these protocols are capable of evaluating circuits over any field/ring.

It is easy to see that any such secret sharing based MPC that evaluates the circuit
in a gate-by-gate manner and maintains the invariant that parties hold shares of all
intermediate wires in the circuit will trivially have support for the Initialize Input,
Initialize constant, Add, Add by const, Multiply, Multiply by const, Function and
Output Private Shares calls. Moreover, since the multiplication in these protocols
typically requires parties to actually generate and compute shares of random values,
the Random call is also implemented by these protocols. We now discuss how the
remaining calls can be implemented in both the semi-honest and malicious settings.

Semi-Honest Setting. The only other calls used in our semi-honest protocols are
Random Bit and Output. As observed in some of these protocols, Random Bit is
also very easy to implement (especially in the semi-honest setting). This is done by
requiring each party Pi to randomly sample bi ∈ {1,−1} and secret share it amongst
all the parties. The parties then add all the shares obtained from all parties (let the
resulting shares be [s]) and then compute [s]+1

2 . The resulting shares will be of a
random bit. Share Zero can be realized with semi-honest security by having every
party secret share 0 and then requiring each party to locally sum up its shares. Finally,
it is easy to see that the Output call can also be easily implemented, since the parties
actually hold shares of all intermediate values. To reconstruct the output, they can
simply broadcast their respective shares to all parties and then run the reconstruction
algorithm.

Malicious Setting. While protocols such as SPDZ [DPSZ12] and its descendants [KOS16,
HOSS18, CDE+18] (that use MACs w.r.t. a global key) delegate the check that en-
sures that these shares are indeed consistent with the “correct” values to the end of the
protocol, we show that these protocols still securely implement all remaining calls in
the Fmpc functionality.

Intuitively, since these protocols delegate the malicious security/consistency
checks to the end the protocol, the only place where we need to ensure that the
shares held by the parties for any particular wire are indeed consistent and correct is
when those values are reconstructed or are used outside of this MPC protocol, i.e., in
the OIP and when the outcome of OIP is returned to the MPC. The subcalls inside
Fmpc that are really affected by this are Initialize Input, Random, Share Zero,
Check Zero and Output Shares and Output. As discussed above, Initialize Input
and Random are already implemented by these protocols.

• Check Zero: For this sub-call, we observe that given authenticated additive
shares ([x1], [m1]), ([x2], [m2]), with m1 = k∗x1, m2 = k∗x2 where k is the global

150
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

MAC key, parties can compute [m] = [m1]− [m2] locally, followed by having
each player Pi first commit and then broadcast its share [m]i to reconstruct [m]
and check if m = ∑i mi = 0.

• Share Zero: For this we can augment the semi-honest Share Zero protocol
described above with an asymptotically efficient batch-wise check to ensure
malicious security. Specifically, to verify the outputs of the ℓ semi-honest Share
Zero calls [x1], . . . , [xℓ], parties can publicly sample ℓ random values {ri}ℓi=1
and compute a random linear combination [r] = ∑

ℓ
i=1 ri[xi] followed by running

the Check Zero call on [r] and a trivial sharing of 0 (each party Pi’s share is 0).

• Output and Output Share: As discussed above authenticated shares in the
above protocols are of the form ([x], [m]), where m = k ∗ x and k is the global
MAC key. For both of these sub-calls, the parties first broadcast their shares
[x] and reconstruct. Then the parties can compute x · [k] and run Check Zero to
check if the resulting shares reconstruct to the same value as the shares [m]. This
is very similar to “MAC check” subprotocol already implemented in [KOS16].

We note that the above proposed protocols only reveal shares [x] and not [m].
Indeed, revealing all shares of both x an m will trivially give away the global
MAC key and make the protocol insecure. To make this compatible with our
maliciously secure protocol, we assume that when the parties use the shares
generated via Fmpc outside of Fmpc (i.e., to compute the OIP messages), they
can do so on the “unauthenticated shares”, i.e., on only the [x] part and not on
the [m] part. Now, before, using the shares obtained as output of this OIP in
Fmpc, we can make them “authenticated” by computing the corresponding [m]
shares for this output. This can be done trivially, since the parties hold a secret
sharing of the global MAC key. This is a standard approach used in many of
the above protocols including MASCOT [KOS16].

Moreover, we remark that the above proposed modification does not cause
our compiler or the compiled protocols to be insecure in any way. This is
because, the authentication mechanism used on the shares is only specific to
Fmpc and not to the primitives used outside of it. As a result, outside of Fmpc,
an adversary can easily modify the authenticated shares in whatever way they
want. Hence, in principle the following strategies are equivalent – (1) where the
computations done outside of Fmpc are performed on authenticated shares. (2)
where the computations done outside of Fmpc are performed on unauthenticated
shares, but we authenticate the output of those computations before they are
used in Fmpc again.

6.6 Non-Constant Round Semi-Honest Branching MPC

In this section, we present our semi-honest compiler for distributed computation of a
circuit with conditional branches.

6.6. NON-CONSTANT ROUND SEMI-HONEST BRANCHING MPC 151

Functionality Fmpc

Initialize Input: On input (initinp,varid,Pi) from Pi (for each i ∈ [n]) with a fresh
identifier varid the functionality stores (varid, [x]).
Initialize constant: On input (initconst,constid,c) from each Pi (i ∈ [n]) with a fresh
identifier varid the functionality stores (const,c).
Random: On command (rand,varid) from all parties, with a fresh identifier varid, the
functionality selects a random value r, stores (varid, [r]) and sends the respective share
[r]i to party Pi (for each i ∈ [n])
Random Bit: On command (bitrand,varid) from all parties, with a fresh identifier
varid, the functionality selects a random bit b ∈ {0,1}, stores (varid, [b]) and sends the
respective share [b]i to party Pi (for each i ∈ [n])
ShareZero: On command (sharezero,varid) from all parties, with a fresh identifier
varid, the functionality computes, stores (varid, [0]) and sends the respective share [0]i
to party Pi (for each i ∈ [n]).
Add: On command (add,varid1,varid2,varid3) from all parties (if varid1, varid2 are
present in memory and varid3 is not), the functionality retrieves (varid1, [x]),(varid2, [y])
and stores (varid3, [x+ y]).
Add by const: On command (add,constid1,varid2,varid3) from all parties (if
constid1, varid2 are present in memory and varid3 is not), the functionality retrieves
(constid1,c),(varid2, [x]) and stores (varid3, [c+ x]).
Multiply: On input (mult,varid1,varid2,varid3) from all parties (if varid1, varid2 are
present in memory and varid3 is not), the functionality retrieves (varid1, [x]),(varid2, [y])
and stores (varid3, [x · y]).
Multiply by const: On command (mult,constid1,varid2,varid3) from all parties (if
constid1, varid2 are present in memory and varid3 is not), the functionality retrieves
(constid1,c),(varid2, [x]) and stores (varid3, [c · x]).
Function: On input (f unc, f ,varid1, . . . ,varidn,varidout) from all parties, the function-
ality retrieves (varid1, [x1]), . . . ,(varidn, [xn]) and stores (varidout, [f (x1, . . . ,xn)]).
Output Shares: On input (outshare,varid) from all parties, the functionality retrieves
(varid, [x]) and outputs all shares [x] to all parties.
Output Private Shares: On input (out privshare,varid) from all parties, the functionality
retrieves (varid, [x]) and outputs the respective share [x]i to party Pi (for each i ∈ [n]).
Check Zero: On input (f checkzero,varid1,varid2) from all parties, the functionality
retrieves (varid1, [x1]),(varid2, [x2]) and outputs 1 w.h.p if x1 = x2 and otherwise it
outputs 0 and aborts.
Output: On input (out,varid) from all honest parties (if varid is present in memory),
the functionality retrieves (varid, [x]) and outputs x to all players.

Figure 6.1: A Required Ideal Functionality for MPC

Let the circuit/function be such that it consists of an initial sub-function f1,
followed by the k branches and then a sub-function f2. We assume that the parties
have access to Fmpc (see Figure 6.1). When evaluated using Fmpc, the output of
f1 is a secret sharing of the inputs to the branching part and a secret sharing of the

152
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

unary representation of the index associated with the branch that needs to be executed
(henceforth referred to as the active branch). The output of the branching part is a
secret sharing of the inputs to the function f2.

Given a circuit C, we assume that the parties decide on some canonical ordering
of the gates in the circuit, such that gate i only takes as inputs the values output by the
gates j < i . We assume w.l.o.g. that the ith gate in C has fan-in 2 and the outgoing
wire of any gate can act as the incoming wire for any number of gates.2

For simplicity, we assume that all branches are of the same size and have G gates.
Our protocol can be easily extended to the scenario where the branches are of varying
sizes by suitably padding the smaller branches with fake gates. Let ℓ be the length of
inputs to the branching part of the function. For evaluating this part, we assume that
there are ℓ input gates that are common to all branches. We set both the incoming and
outgoing labels for the wires coming out of these gates as 1, . . . , ℓ respectively. For
each branch m ∈ [k], and each gate i in this branch, we assign outgoing label i+ ℓ to
the wire coming out of this gate and incoming labels ℓ+2i−1 and ℓ+2i respectively
to its two incoming wires. Therefore, we assume that the number of unique outgoing
labels assigned in a branch are G+ ℓ, while the total number of unique incoming
labels assigned in a branch are W = 2G+ ℓ. We present a slightly optimized version
of the protocol described in the introduction, namely that only requires parties to
sample 1 mask per wire, instead of 2 masks.

Let π be the mapping corresponding to a circuit C that maps incoming labels to
the outgoing labels of each wire in C. For instance, π(i) corresponds to the outgoing
label of the wire with incoming label i. Let C1, . . . ,Ck be the circuit representations of
the k branches and let {π1, . . . ,πk} be the corresponding mappings associated with
these branches. Finally, we assume that the circuits and inputs are defined over some
field F.

Protocol. The parties start by invoking (f unc, f1,x1, . . . ,xn,x1, . . . ,xℓ, b1, . . . ,bk) in
Fmpc on their original inputs x1, . . . ,xn, to obtain shares of inputs to the branching
part [x1], . . . , [xℓ], where |ℓ| is the total input length and shares [b1], . . . , [bk], where
b1 . . .bk is the unary representation of the index associated with the active branch.
Given these shares, parties run the protocol presented in Figure 6.2. The output of this
protocol is a secret sharing of the inputs to f2 (i.e., the last part of the circuit). Let m
be the length of these inputs. The parties finally invoke (f unc, f2,y1, . . . ,ym,out) and
(out,out) in Fmpc to learn the final output out.

Optimization. A naive implementation of the online phase in the above protocol
will result in a round complexity that depends on the maximum number of gates
in any particular branch. This can be improved to be proportional to the maximum
multiplicative depth of any branch by using a simple optimization. For simplicity, lets
assume that all branches have the same depth and each layer of each branch contains
the same number of gates. We know that the gates on level ℓ only depend on the

2Our compiler can work with circuits that have gates with arbitrary fan-out. In our construction, it
suffices to view such gates as having a single outgoing wire that acts as the incoming wire for multiple
gates. Hence, we only assign a single label to the outgoing wire of each gate.

6.6. NON-CONSTANT ROUND SEMI-HONEST BRANCHING MPC 153

Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model. Parties have shares of inputs to the
branches, i.e., [x1], . . . , [xℓ] and shares of a unary representation of the active branch, i.e.,
[b1], . . . , [bk].

• Pre-processing Phase:

1. Sample masks: For each input and gate g ∈ [ℓ+G], parties invoke (rand,maskg)

in Fmpc to obtain shares [maskg]. For each branch m ∈ [k], let [
−−−−→
maskπm] =

[maskπm(1)]∥ . . .∥[maskπm(W)].

2. Shares of zeros: For each w ∈ [W] and i ∈ [n], parties invoke (sharezero,Xw,i)

in Fmpc to get shares [Xw,i], where Xw,i = 0. For each i ∈ [n], let [
−→
Xi] =

[X1,i]∥ . . .∥[XW,i].

3. Pairwise OIP: Each pair of parties PR and PS (∀R,S∈ [n]) engage in a two-message
semi-honest OIP as follows, where PR acts as the receiver and PS acts as the sender:

– Receiver: PR computes (ρ,msgR)← OIPR(1λ , [b1]R, . . . , [bk]R) and sends
msgR to PS.

– Sender: PS computes msgS←OIPS(1λ ,msgR, [
−→
XR]S, [

−−−−→
maskπ1]S, . . . , [

−−−−→
maskπk]S)

and sends msgS to PR.

– Output: PR computes
−−−−−→
shareR,S← OIPout(ρ,msgR,msgS).

4. ∆ values: Each party Pi (for i ∈ [n]) computes [
−→
∆]i = ∑ j∈[n]

−−−−→
share j,i, where [

−→
∆] =

[∆1]∥ . . .∥[∆W].

• Online Phase :

1. Inputs: For each input wire i∈ [ℓ], parties compute [ui] = [xi]+[maski]. and invoke
(out,ui) in Fmpc to obtain ui in the clear.

2. Circuit Evaluation: For each gate g ∈ [G], let left= ℓ+2g−1 and right= ℓ+2g
be the incoming wire labels of its input wires. Let typem,g be the gate type for gate
g in Cm (∀m ∈ [k]), where typem,g = 0 denotes an addition gate and typem,g = 1
denotes a multiplication gate. Parties compute the following using Fmpc:

a) For w ∈ {left, right}, compute [yw] = ∑
k
m=1

(
uπm(w) · [bm]

)
− [∆w].

b) Compute [typeg] = ∑
k
m=1

(
typem,g · [bm]

)
c) Compute [zg] = [yleft]+ [yright]+ [typeg] · ([yleft] · [yright]− [yleft]− [yright]).
d) Compute [uℓ+g] = [zg]+ [maskℓ+g] and invoke (out,us) in Fmpc to obtain us

in the clear.

3. Output: For each output gate g, compute [zg] = ∑
k
m=1

(
uπm(w) · [bm]

)
− [∆w].

Figure 6.2: Semi-Honest Compiler

154
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

outgoing wires of gates on layers < ℓ. We can therefore evaluate all the gates in a
particular level in parallel. This simple idea can also be extended to the case where
the branches have different depths and widths. In that case, let xℓ (and yℓ resp.) be
the minimum (and maximum resp.) number of gates on level ℓ in any branch. We
can evaluate the first xℓ gates in parallel. Then in the next round we can evaluate the
yℓ− xℓ+ xℓ+1 gates in parallel. This ensures that the overall round complexity of the
online phase will only depend on the depth of the branches.

Complexity Analysis. We now analyze the communication complexity of the above
semi-honest protocol. If we use a rate-1 OIP, the communication complexity in the
pre-processing phase is O(n2|Cmax|+ n2kλ), where |Cmax| is the size of the largest
branch. In the online phase for each gate we perform both addition and multiplication
and then choose between the two. As a result we perform 2 multiplications per
gate. The communication complexity of the online phase is O(2×CC(|Cmax|)), where
CC(|Cmax|) is the communication complexity incurred upon evaluating Cmax using the
underlying MPC.

Overall, given the above protocol and optimizations, we obtain the following
result.

Theorem 9 Let λ be the security parameter and F be a function class consisting of
functions of the form f (−→x) = f2(fbr(f1(

−→x))), where fbr := {g1, . . . ,gk} is a function
consisting of k conditional branches, defined as fbr(i,

−→x) = gi(
−→x). Assuming the

existence of a rate-1 two-message semi-honest secure OIP (see Definition 25), there
exists an MPC protocol in the Fmpc-hybrid model (see Section 6.5) for computing any
f ∈F that achieves semi-honest security against an arbitrary number of corruptions
and incurs a communication overhead of O(n2(kλ + |Cmax|)).

In Section 6.9, we show that a rate-1 two-message semi-honest secure OIP can
be constructed from rate-1 linearly homomorphic encryption. Such encryptions are
known [FV12, CL15, DJ01, PVW08] from a variety of assumptions including LWE,
Ring LWE and DDH assumption.

Security

We now prove security of our semi-honest protocol. We start by describing the
simulator and then proceed to argue indistinguishability between the real and ideal
world executions.

Simulator. Let A be the adversary who corrupts a subset I ⊂ [n] of the parties and
H = [n]\I be the set of honest parties. Let SR be the simulator associated with
security of OIP against semi-honest receiver (see Definition 25). Given the output z
and inputs {xi}i∈C of the corrupt parties the simulator proceeds as follows:

• Computing f1. For each i ∈I , j ∈ [ℓ], sample random shares [x j]i and for each
m ∈ [k], sample random shares [bm]i and send all of these shares to the adversary.

6.6. NON-CONSTANT ROUND SEMI-HONEST BRANCHING MPC 155

• Pre-processing Phase.

– For each w ∈ [W] and i ∈I , sample random [maskw]i and send these values to
the adversary.

– For each w ∈ [W] and i ∈ [n] and j ∈I , sample random shares [Xw,i] j and sends
to the adversary.

– For each pair of parties PR and PS (∀R ∈I ,S ∈H), upon receiving a message
msgR from the adversary, sample a random vector of shares

−→
V R,S, compute

msgS←SR(1λ ,msgR,
−→
V R,S) and send msgS to the adversary on behalf of honest

PS.

– For each pair of parties PR and PS (∀R ∈H ,S ∈I), set [b1]R = . . .= [bk]R = 0,
compute ρ,msgR← OIPR(1λ , [b1]R, . . . , [bk]R) and send msgR to the adversary
on behalf of honest PR. Also, set

−−−−−→
shareR,S = [

−→
XR]S+∑i∈[k][bi]R[

−−−−→
maskπi]S.

• Online Phase. In the online phase, the simulator mimcs the computation done by
Fmpc. Recall from the description of Fmpc (in Figure 6.1) that this only requires
sending messages to the adversary whenever (out, ·) is invoked. Since in the online
phase, this is invoked on random values, the simulator can easily emulate this by
sending a random value to the adversary for each such call.

• Computing f2. Sends output z to the adversary.

Indistinguishability Argument. We argue indistinguishability via the following
sequence of hybrids:

H0 : This hybrid is identical to the real world execution.

H1 : This hybrid is very similar to the previous hybrid except that in the preprocessing
phase for each pair of parties PR and PS (∀R ∈H ,S ∈I), we change the way
msgR and

−−−−−→
shareR,S are computed:

– ρ,msgR← OIPR(1λ ,0 . . . ,0).

–
−−−−−→
shareR,S = [

−→
XR]S+∑i∈[k][bi]R[

−−−−→
maskπi]S.

For indistinguishability between hybrids H0 and H1, we consider a sequence
of sub-hybrids, where we change the way msgR and

−−−−−→
shareR,S are computed for

each pair PR and PS (where R ∈H ,S ∈ I), one hybrid at a time. In terms
of the view of the adversary, the only change in each of these sub-hybrids
is in the way msgR is computed for one pair R ∈ I ,S ∈H . As a result,
indistinguishability between each consecutive pair of sub-hybrids follows the
security of OIP against a semi-honest sender and by transitivity, it holds that H0
and H1 are indistinguishable.

156
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

H2 : This hybrid is very similar to the previous hybrid except that in the preprocessing
phase, for each pair of parties PR and PS (∀R ∈ I ,S ∈ H), we compute
msgS←SR(1λ ,msgR,

−→
V R,S), using some random share

−→
V R,S.

For indistinguishability between hybrids H1 and H2, we consider a sequence
of sub-hybirds, where we change the way msgS is computed for each pair
R ∈I ,S ∈H , one hybrid at a time.

The only difference between any two consecutive pairs of these sub-hybrids is
that in one we compute msgS using a random vector of shares

−→
V R,S and the

simulator for some receiver R and sender S, while in the other msgS is computed
honestly and the output that the receiver gets is [

−→
XR]S+∑m∈[k][bm]R[

−−−−→
maskπm]S.

Since [
−→
XR]S is a random vector of shares, this output is identically distributed

to
−→
V R,S. Given this output indistinguishability between a simulated message

msgS, and an honestly computed message msgS follows from security of OIP
against a semi-honest receiver. As a result, this sub-hybrid is indistinguish-
able from its previous hybrid and by transitivity, it holds that H1 and H2 are
indistinguishable.

H3 : This hybrid is identical to the simulator description.

Indistinguishability between hybrids H2 and H3 follows from semi-honest
security of the underlying MPC protocol.

6.7 Non-Constant Round Maliciously Secure Branching
MPC

In this section, we present our maliciously secure compiler for distributed computation
of a branching circuit. We borrow notations from the previous section. As discussed
in the introduction, the basic outline of our maliciously secure protocol remains the
same except that we now use a two-message OIP that is secure against malicious
receivers. Also, in order to ensure that the sender behaves honestly, we make use of
non-interactive commitments.

Protocol. Similar to the semi-honest protocol, the parties start by invoking (f unc, f1,
,x1, . . . ,xn, ,x1, . . . ,xℓ,b1, . . . ,bk) in Fmpc on their original inputs x1, . . . ,xn, to obtain
shares of inputs to the branching part [x1], . . . , [xℓ], where |ℓ| is the total input length
and shares [b1], . . . , [bk], where b1 . . .bk is the unary representation of the index associ-
ated with the active branch. Given these shares, the parties run the protocol presented
in Figures 6.3 and 6.4. The output of this protocol is a secret sharing of the inputs to f2
(i.e., the last part of the circuit). Let m be the length of these inputs. The parties finally
invoke (f unc, f2,y1, . . . ,ym,out) and (out,out) in Fmpc to learn the final output out.

Complexity Analysis. If we use a rate-1 OIP, the communication complexity in
the preprocessing phase is O(δ × n2|Cmax|+ n2kλ), where |Cmax| is the size of the
largest branch and δ = κ/0.311. The online phase is repeated for each q ∈ [δ]\Z,

6.7. NON-CONSTANT ROUND MALICIOUSLY SECURE BRANCHING MPC157

as a result, the communication complexity of the online phase is O(δ ×CC(|Cmax|)),
where CC(|Cmax|) is the communication complexity incured upon evalutaing Cmax
using the underlying MPC.

Overall, the above protocol gives us the following result.

Theorem 10 Let λ be the computational security parameter and κ be the statistical
security parameter. Let F be a function class consisting of functions of the form
f (−→x) = f2(fbr(f1(

−→x))), where fbr := {g1, . . . ,gk} is a function consisting of k con-
ditional branches, defined as fbr(i,

−→x) = gi(
−→x). Assuming the existence of a rate-1

two-message OIP secure against a malicious receiver (see Definition 25), there exists
an MPC protocol in the Fmpc-hybrid model (see Section 6.5) for computing any
f ∈F that achieves security with abort against an arbitrary number of malicious
corruptions and incurs a communication overhead of O(n2(kλ +κ|Cmax|)).

Rate-1 two-message OIP secure against a malicious receiver can be built from
rate-1 linearly homomorphic encryption and non-interactive zero-knowledge.

Security

We now prove security of our malicious protocol. We start by describing the simulator
and then proceed to argue indistinguishability between the view of the adversary in
the real protocol execution and the view generated by the simulator.

Simulator. Let I ⊂ [n] be the set of corrupt parties and H = [n]\I be the set of
honest parties. Let SR = (S 1

R ,S
2
R) be the simulators corresponding to the malcious

receiver security of OIP. Given the output z and inputs {xi}i∈C of the corrupt parties
the simulator proceeds as follows:

• Computing f1. When the adversary sends its inputs to Fmpc while invoking f unc,
the simulator receives them and queries the ideal functionality on these inputs to
get the final output. For each i ∈I , j ∈ [ℓ], the simulator samples random share
[x j]i and for each m ∈ [k], it samples random share [bm]i and sends these shares to
the adversary.

• Pre-processing Phase.

– For each q ∈ [δ], w ∈ [W] and i ∈ I , the simulator samples random shares
[maskq

w]i and sends these values to the adversary.

– For each q ∈ [δ], w ∈ [W] and i ∈ [n] and j ∈I , the simulator samples random
shares [Xq

w,i] j and sends to the adversary.

– It samples a random subset Z ⊂ [δ] of size δ/2.

– For each pair of parties PR and PS (∀R ∈H ,S ∈I), the simulator sets [b1]R =
. . . = [bk]R = 0, computes ρ,msgR→S ← OIPR(1λ , [b1]R, . . . , [bk]R) and sends
msgR to the adversary on behalf of honest PR.

158
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

– For each pair of parties PR and PS (∀R ∈I ,S ∈H), the simulator proceeds as
follows:

* For each q ∈ [δ], it samples random values rq
0, . . . ,r

q
k ∈ Fk+1.

* For each q ∈ Z, sample random shares [
−→
Xq
R]S, [
−−−−→
maskq

π1], . . . , [
−−−−→
maskq

πk] and com-
pute

msgq
S→R←OIPS(1λ ,msgR→S, [

−→
Xq
R]S∥r

q
0, [
−−−−→
maskq

π1]S∥r
q
1, . . . , [

−−−−→
maskq

πk]S∥r
q
k ;ρ

S,q
R,S)

cq
R,S← Commit([

−→
Xq
R]S∥r

q
0, [
−−−−→
maskq

π1]S∥r
q
1, . . . , [

−−−−→
maskq

πk]S∥r
q
k ,ρ

S,q
R,S;ρ

c,q
R,S)

.

* For each q∈ [δ]\Z, the simulator samples a random vector of shares
−→
V q

R,S and

computes msgq
S→R←S 2

R(1
λ ,msgR→S,

−→
V q

R,S) and cq
R,S← Commit(0;ρ

c,q
R,S).

* For each q ∈ [δ], it sends msgq
S→R and cq

R,S to the adversary on behalf of an
honest PS.

* Receiver Consistency Check: For each q ∈ Z, upon receiving macδ

R,S, the
simulator runs S 1

R on msgR→S to extract [b1]
′
R, . . . , [bk]

′
R. Check if for each

m ∈ [k], [bm]
′
R = [bm]R and if macδ

R,S = rq
0 +∑m∈[k][bm]Rrq

m. If both these
checks succeed, output 1 when the parties invoke the checkzero function, else
output 0 and the simulator signals the ideal functionality to send abort to the
honest parties and aborts the protocol.

– Sender Consistency Check: The simulator sends Z to the adversary. For each
q ∈ Z send all shares of maskq

π1 . . . ,maskq
πk and Xq

w,i used in the OIP instances to
the adversary.

* Send all shares of maskq
π1 . . . ,maskq

πk and Xq
w,i used in the OIP instances to

the adversary.

* For each pair of parties PR and PS (where R ∈H ,S ∈ I), the simulator
checks if all the messages and commitments were honestly computed. If
not, it signals the ideal functionality to send abort to the honest parties and
aborts the protocol.

* For each pair of parties PR and PS (where R ∈ I ,S ∈H), the simulator
proceeds exactly as in the real protocol.

• Online Phase. In the online phase, the simulator mimics the computation done
by Fmpc, except that it does not compute the majority function. Instead it sends
random shares for each output gate to the adversary.

For all other steps in the online phase, based on the description of Fmpc (in Figure
6.1), the simulator only needs to send messages to the adversary whenever (out, ·)
is invoked. Since in the online phase, this is only invoked on random values, the
simulator can easily emulate this by sending a random value to the adversary for
each such call.

6.7. NON-CONSTANT ROUND MALICIOUSLY SECURE BRANCHING MPC159

• Computing f2. Outputs the output received from the ideal functionality in the first
step to the adversary and send continue to the ideal functionality to signal that the
honest parties can learn the output.

Indistinguishability Argument. We argue indistinguishability between the real and
ideal executions, via the following sequence of hybrids:

H0 : This hybrid is identical to the real world execution.

H1 : This hybrid is very similar to the previous one, except that the subset Z is
sampled before the parties engage in the pairwise OIP protocols, but is revealed
to the parties only during the sender consistency checks.

Hybrids H0 and H1 are trivially indistinguishable.

H2 : This hybrid is very similar to the previous one, except that for each q ∈ [δ]\Z
and each pair of parties PR and PS (where R ∈I ,S ∈H), we compute cq

R,S←
Commit(0;ρ

c,q
R,S).

Indistinguishability between hybrids H1 and H2 follows from a sequence of
sub-hybrids, where we change the way cq

R,S is computed for q∈ [δ]\Z and each
pair PR and PS (where R∈I ,S∈H), one hybrid at a time. Indistinguishability
between each consecutive pair of sub-hybrids follows from the hiding property
of the commitment scheme and by transitivity it follows that H1 and H2 are
indistinguishable.

H3 : This hybrid is very similar to the previous hybrid except that in the preprocessing
phase, for each q ∈ [δ]\Z and for each pair of parties PR and PS (∀R ∈I ,S ∈
H), we compute msgq

S→R←S 2
R(1

λ ,msgR,
−→
V q

R,S), for some random vector

of shares
−→
V q

R,S.

For indistinguishability between hybrids H2 and H3, we consider a sequence of
sub-hybirds, where we change the way msgS→R is computed for each q∈ [δ]\Z
and each pair R ∈I ,S ∈H , one hybrid at a time.

The only difference between any two consecutive pairs of these sub-hybrids
is that in one we compute msgS→R using a random vector of shares

−→
V R,S and

the simulator for some q ∈ [δ]\Z and some receiver R and sender S, while in
the other, msgS→R is computed honestly and the output that the receiver gets
is [
−→
XR]S+∑m∈[k][bm]R[

−−−−→
maskπm]S. Since [

−→
XR]S is a random vector of shares, this

output is identically distributed to
−→
V R,S. Given this output, indistinguishability

between a simulated message msgS→R, and an honestly computed message
msgS→R follows from security of OIP against a malicious receivers. As a result,
this sub-hybrid is indistinguishable from its previous hybrid and by transitivity,
it holds that H2 and H3

160
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

H4 : This hybrid is very similar to the previous hybrid except that in the preprocessing
phase for each pair of parties PR and PS (∀R ∈H ,S ∈I), we change the way
msgR and

−−−−−→
shareR,S:

– ρ,msgR→S← OIPR(1λ ,0 . . . ,0).

– For each q ∈ [δ]\Z,
−−−−−→
shareq

R,S = [
−→
Xq
R]S+∑i∈[k][bi]R[

−−−−→
maskq

πi]S.

For indistinguishability between hybrids H3 and H4, we consider a sequence of
sub-hybrids, where we change the way msgR→S and

−−−−−→
shareR,S are computed for

each q ∈ [δ]\Z and each pair PR and PS (where R ∈H ,S ∈I), one hybrid at
a time. In terms of the view of the adversary, the only change in each of these
sub-hybrids is in the way msgR→S is computed for one pair R ∈I ,S ∈H and
some q ∈ [δ] \Z. As a result, indistinguishability between each consecutive
pair of sub-hybrids follows the security of OIP against a semi-honest sender
and by transitivity, it holds that H3 and H4 are indistinguishable.

H5 : This hybrid is identical to the simulator description.

The main difference between H4 and H5 is that in H5, simulator emulates
the Fmpc functionality and hence, the way the output of the honest parties is
computed differs in the two protocols. In particular, in H4, we take a majority
of all the runs of the online phase and only if there exists an output that appears
> δ/4 times, do we open the ouput. In H5, the simulator simply checks if all the
opened commitments are consistent to consider the output. Let noAbort denote
an event where in our cut-and-choose step, all instances in Z are valid. Also
let badMaj denote the event where > δ/4 instances in the remaining set [δ]\Z
are invalid. To argue indistinguishability between the output of honest parties
in the hybrids H4 and H5, we start by recalling Claim 4.3 from [LP11]. At a
high level, this claim essentially states that the probability that > δ/4 instances
are invalid and neither gets caught in the opening phase of the cut-and-choose
protocol, is 1/20.311δ . More formally

Claim 1 For every δ ∈ N, it holds that

Pr[noAbort∧badMaj] =

(3δ

4 +1
δ

2 +1

)
(

δ

δ/2

) <
1

2
δ

4−1

and for large enough s (depending on Stirling’s approximation), it holds that
Pr[noAbort∧badMaj] = 1

20.311δ

From the binding property of the commitment scheme, it follows that if any
instance in Z is invalid, it will get caught in both H4 and H5. And if all the
checks performed on these instances in Z succeed, then indeed, they are all
valid/consistent and it is a noAbort event. In this case, in hybrid H5, the

6.8. CONSTANT ROUND SEMI-HONEST BRANCHING MPC 161

simulator signals the ideal functionality to send the correct output to the honest
parties. Therefore, the output of the honest parties in this case will differ
from their output in hybrid H4 only when noAbort∧ badMaj happens. For
δ = κ/0.311, this only happens with exponentially small probability and hence
the output of the honest parties is indistinguishable in the two hybrids H4 and
H5. Indistinguishability between the view of the adversary in the two hybrids
follows from malicious security of the underlying MPC protcol.

6.8 Constant Round Semi-Honest Branching MPC

In this section we present our constant round semi-honest protocol for distributed
computation of a branching circuit.

As discussed in the technical overview, we encrypt keys for the output wires of
each gate during garbling using the help of a random function instantiated using the
decisional Ring LWE (RLWE) assumption. Let p = 2N + 1 be a prime, where N,
called the dimension or security parameter, is a power of 2. Let Rp =Zp[X]/(XN +1)
be the polynomial ring over Zp modulo XN +1. We start by recalling the decisional
RLWE assumption stated by Ben-Efraim et al. [BLO17].

Definition 26 (Decisional Ring LWE Problem) Any non-uniform PPT adversary
cannot distinguish between {(ai,bi)}i∈I and {(ai,ai · k+δi)}i∈I with non-negligible
probability where {ai}i∈I , {bi}i∈I and k are chosen uniformly at random from Rp and
the coeffecients of {ei}i∈I are sampled from χ , a spherical Gaussian distribution.

By transforming to the Hermite normal form, the decisional RLWE assumption
also holds if the key k is chosen from a spherical Gaussian distribution. Similar
to the construction of Ben-Efraim et al. [BLO17], sampling both the key and error
from χ is key to eliminating the error during decryption in the evaluation phase of
our protocol. Specifically, if the mean of the Gaussian distribution χ is

√
p

2 and the
standard deviation is sufficiently small, a sample is not in the range [0,

√
p] with

negligible probability. Thus, dividing by
√

p during decryption removes the error and
recovers the message if the message was multiplied by

√
p during encryption.

While we use new public random elements Au,v
g from the ring for every RLWE

expansion in our protocol, [BLO17] shows that 8 · fout uniformly random and public
elements from the ring suffice, where fout is the maximal fan-out of the circuit, as
long as ciphertexts for gates that share inputs wires are computed using distinct sets
of elements. Similar to [BLO17], 8 · fout must be less than the bound on the number
of RLWE samples |I|, for security to hold. We refer the reader to [LPR10, LPR13]
for more details about the decisional RLWE assumption.

Our protocol follows the BMR approach which involves sampling a pair of keys
k0

w,k
1
w for each wire w in the circuit. A garbled table is then constructed for each gate

such that the key corresponding to the value on the output wire is encrypted using
the keys corresponding to the input values. Since the position of each ciphertext in
the garbled table leaks information about its plaintext, a private random mask bit

162
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

γw ∈ {0,1} is sampled for each wire w and the masks for the input wires are used to
permute the rows of the garbled table for each gate. Let the external value βw on a
wire be the plaintext value ρw on the wire masked with the mask γw i.e., βw = ρw⊕ γw.
Then, the masks on the input wires are used to permute the rows of the garbled table
such that the external values on the input wires can be used to index into the required
row of the garbled table. Thus, to ensure that parties decrypt the correct row when
evaluating the circuit, the mask for the output wire has to also be included in the
ciphertext for each row. We use the approach of Ben-Efraim et al. [BLO17], where
the last coordinate of the keys k0

w,k
1
w for each wire are set to 0, which slightly reduces

security, and the external value is embedded into this coordinate during encryption.
We use k∥e to denote that the bit e was embedded in the last coordinate of the key k.

The garbling phase is presented in Figure 6.5 and the evaluation phase is presented
in Figure 6.6. We adopt the same notation as the semi-honest protocol presented in
Figure 6.2. If ℓ be the number of input wires to the branching part of the function, we
set the incoming and outgoing labels for these wires to be 1, . . . , ℓ. For each gate g we
set the outgoing wire label to be ℓ+g, the left incoming wire label to be ℓ+2g−1
and the right incoming wire label to be ℓ+2g. We also let πm for each m ∈ [k] to be
the mapping that maps incoming labels to the outgoing labels of each wire for the
m-th branch.

Finally, we remark that we require Fmpc to run in constant number of rounds for
constant depth circuits to ensure that our protocol has constant number of rounds. This
is true for most secret sharing based protocols that evaluate the circuit in a gate-by-gate
manner.

Complexity Analysis. We now analyze the communication complexity of the above
constant round semi-honest protocol. We assume that the size of the ring Rp is in
O(λ). If we use a constant rate semi-honest secure OIP, the communication com-
plexity in the garbling phase is O(n2|Cmax|+n2kλCC(λ |Cmax|)), where |Cmax| is the
size of the largest branch and CC(λ |Cmax|) is the communication complexity incurred
upon evaluating Cmax using the underlying MPC. In the evaluation phase, the commu-
nication cost incurred is for reconstructing O(λ |Cmax|) shares corresponding to the
garbling material.

Overall, given the above protocol and optimizations, we obtain the following
result.

Theorem 11 Let λ be the security parameter and F be a function class consisting of
functions of the form f (−→x) = f2(fbr(f1(

−→x))), where fbr := {g1, . . . ,gk} is a function
consisting of k conditional branches, defined as fbr(i,

−→x) = gi(
−→x). Assuming that a

rate-1 two-message semi-honest secure OIP exists (see Definition 25) and that the
decisional RLWE problem holds (see Definition 26), there exists a constant-round
MPC protocol in the Fmpc-hybrid model (see Section 6.5) for computing any f ∈F
that achieves semi-honest security against an arbitrary number of corruptions and
incurs a communication overhead of O(n2λ (k+ |Cmax|)).

6.8. CONSTANT ROUND SEMI-HONEST BRANCHING MPC 163

Note that if we instatiate the rate-1 two-message semi-honest secure OIP using
RLWE-based linearly homomorphic encryption, then the above theorem yields a
protocol that only relies on the hardness of the decisional RLWE.

Security

We now prove security of our constant round semi-honest protocol. We start by
describing the simulator and then proceed to argue indistinguishability between the
real and ideal world executions.

Simulator. Let A be the adversary who corrupts a subset I ⊂ [n] of the parties and
H = [n]\I be the set of honest parties. Let SR be the simulator associated with
the semi-honest security against receiver of the OIP. Given the output z and inputs
{xi}i∈C of the corrupt parties the simulator proceeds as follows:

• Computing f1. For each i ∈I , j ∈ [ℓ], the simulator samples random share [x j]i
and for each m ∈ [k], it samples random share [bm]i and sends all these shares to the
adversary.

• Garbling phase.

– For each input and gate g ∈ [ℓ+G], the simulator samples random [γg]i←Rp

for each i ∈I and sends it to the adversary.

– For each j ∈ [n], w ∈ [W + 4G], and i ∈ I , the simulator samples random
[X j,w]i←Rp and sends it to the adversary.

– For each pair of parties PR and PS (∀R ∈ H ,S ∈ I), the simulator sets
[b1]R = . . .= [bk]R = 0, computes ρ,msgR← OIPR(1λ , [b1]R, . . . , [bk]R) and
sends msgR to the adversary on behalf of honest PR.

– For each pair of parties PR and PS (∀R∈I ,S∈H), upon receiving a message
msgR from the adversary, the simulator samples a random vector of shares
−→
V R,S and computes msgS ← SR(1λ ,msgR,

−→
V R,S). It sends msgS to the

adversary on behalf of honest PS.

– When garbling the active branch, the simulator mimics the computation done
by Fmpc.

• Evaluation phase.

– For each input wire w ∈ [ℓ], the simulator samples random βw←{0,1}, and
sends it to the adversary.

– For each input wire w ∈ [ℓ], the simulator samples random kβw
w ←Rp, and

also sends it to the adversary.

– For each g ∈ [G] and u,v ∈ {0,1}, the simulator samples random Cu,v
g ←Rp,

randomly sets the last coordinate to either 0 or 1 and sends it to the adversary.

164
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Indistinguishability Argument. We argue indistinguishability via the following
sequence of hybrids:

H0 : This hybrid is identical to the real world execution.

H1 : This hybrid is very similar to the previous hybrid except that in the garbling
phase for each pair of parties PR and PS (∀R ∈H ,S ∈I), we change the way
msgR and

−−−−−−−→
shareR,share are computed:

– ρ,msgR← OIPR(1λ ,0 . . . ,0).

–
−−−−−→
shareR,S = [

−→
XR]S+∑i∈[k][bi]R[

−→xi]S.

For indistinguishability between hybrids H0 and H1, we consider a sequence
of sub-hybrids, where we change the way msgR and

−−−−−→
shareR,S are computed for

each pair PR and PS (where R ∈H ,S ∈ I), one hybrid at a time. In terms
of the view of the adversary, the only change in each of these sub-hybrids
is in the way msgR is computed for one pair R ∈ I ,S ∈H . As a result,
indistinguishability between each consecutive pair of sub-hybrids follows the
security of OIP against a semi-honest sender and by transitivity, it holds that H0
and H1 are indistinguishable.

H2 : This hybrid is very similar to the previous hybrid except that in the garbling
phase, for each pair of parties PR and PS (∀R ∈ I ,S ∈ H), we compute
msgS←SR(1λ ,msgR,

−→
V R,S) for some random vector of shares

−→
V R,S.

The only difference between any two consecutive pairs of these sub-hybrids is
that in one we compute msgS using a random vector of shares

−→
V R,S and the

simulator for some receiver R and sender S, while in the other msgS is computed
honestly and the output that the receiver gets is [

−→
XR]S+∑i∈[k][bi]R[

−→xi]S. Since
[
−→
XR]S is a random vector of shares, this output is identically distributed to

−→
V R,S.

Given this output indistinguishability between a simulated message msgS, and
an honestly computed message msgS follows from security of OIP against a
semi-honest receiver. As a result, this sub-hybrid is indistinguishable from its
previous hybrid and by transitivity, it holds that H1 and H2 are indistinguishable.

H3 : This hybrid is similar to the previous hybrid except that Cu,v
g is sampled uni-

formly at random from Rp for all g ∈ [G] and u,v ∈ {0,1}.

Indistinguishability between hybrids H2 and H3 follows from a sequence of
sub-hybrids, each relying on the decisional RLWE hardness assumption, where
we change Cu,v

g one at a time.

H4 : This hybrid is identical to the simulator description.

Indistinguishability between hybrids H3 and H4 follows from the semi-honest
security of the underlying MPC protocol.

6.9. OIP FROM LINEARLY HOMOMORPHIC ENCRYPTION 165

6.9 OIP from Linearly Homomorphic Encryption

In this section, we show how to construct OIPs from linearly homomorphic encryption.

Linearly Homomorphic Encryption

We start by recalling the definition of linearly homomorphic encryption.

Definition 27 (Linearly Homomorphic Encryption) A linearly homomorphic en-
cryption scheme over a message space M is defined by a tuple of 4 PPT algorithms
(KGen,Enc,Dec,Eval) as follows:

• (pk,sk)← KGen(1λ): On input the security parameter λ , the key generation
algorithm outputs a public key pk and a secret key sk.

• c← Enc(pk,x): On input the public key pk and a message x ∈M , the encryp-
tion algorithm outputs a ciphertext c.

• x← Dec(sk,c): On input the secret key sk and the ciphertext c, the decryption
algorithm outputs a message m ∈M .

• cL ← Eval(pk,L,c1, . . . ,ck) On input the public key pk, a set of ciphertexts
c1. . . . ,ck and a linear function L : M k→M , the evaluation algorithm outputs
another ciphertext cL.

We proceed to define three main properties of a linearly homomorphic encryption
scheme: correctness, homomorphism and privacy.

• Correctness: Let (pk,sk)← KGen(1λ). Then for any x ∈M , it holds that:

Pr
[
Dec

(
sk,Enc(pk,x)

)
= x
]
= 1

• Homomorphism: Let (pk,sk)← KGen(1λ). Then for any x1, . . . ,xk ∈M k and
any linear function L : M k→M , it holds that:

Pr
[
Dec

(
sk,Eval

(
pk,L,{Enc(pk,xi)}i∈[k]

))
= L(x1, . . . ,xk)

]
= 1

• Circuit Privacy: There exists a PPT simulator S, such that for every PPT
adversary A with inputs x1, . . . ,xk ∈M k and any linear function L : M k→M
the following distributions are computationally indistinguishable:

Eval
(
pk,L,{ci}i∈[k]

)
≈c S(1λ ,pk,L({xi}i∈[k])),

where (pk,sk)←KGen(1λ) and ci←Enc(pk,xi) for each i∈ [k] were generated
honestly by A .

166
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

• Privacy: For all n.u. PPT adversaries A , there exists a negligible function µ(·)
such that:

Pr

 (pk,sk)← KGen(1λ),

(x0,x1)←A (1λ ,pk), : A (Enc(sk,xb)) = b

b $←− {0,1}

≤ 1
2
+µ(λ)

where |x0|= |x1|.

Such linearly homomorphic encryption can be obtained from a variety of assump-
tions [FV12, CL15, DJ01, PVW08]. In our implementation we use a variant of the
BFV scheme [FV12].

Constructing OIP

We now describe a simple construction of a semi-honest OIP using linearly homomor-
phic encryption.

Lemma 10 Let (KGen,Enc,Dec,Eval) be a linearly homomorphic encryption, then
the construction in Figure 6.7 is a two-message semi-honest oblivious inner product
protocol.

Proof 16 Correctness of this construction follows trivially from the correctness and
homomorphic property of the underlying linearly homomorphic encryption scheme.
Security against semi-honest sender follows from privacy of the encryption scheme
and security against semi-honest receiver follows from circuit privacy.

Remark. Note that if the linearly homomorphic encryption scheme has a constant
rate, then the length of the sender message in the above construction of OIP only
depends on the length of the output and not on the inputs of the sender. Also, the
above construction is only semi-honest secure. For our maliciously secure MPC, we
also require an OIP that is secure against a malicious receiver. Such an OIP can be
easily constructed by attaching non-interactive zero-knowledge proofs of knowledge
to the receiver messages.

6.10 Implementation

We implement and benchmark our semi-honest non-constant round protocol from
Section 6.6. The code is publicly available at https://github.com/rot256/
research-branching-mpc. In addition to the code and instructions used for bench-
marking, the repository also contains the raw data used in this paper and scripts used
to create the plots.

https://github.com/rot256/research-branching-mpc
https://github.com/rot256/research-branching-mpc

6.10. IMPLEMENTATION 167

How We Benchmark

Underlaying MPC. We implement our semi-honest compiler on top of two different
multi-party computation protocols.

1. Quadratic Dependence on the Number of Parties. A semi-honest variant of
MASCOT [KOS16] (MASCOT without sacrificing and message authentica-
tion codes) over the prime field F216+1 = Z/(0x10001 Z) provided by MP-
SPDZ [Kel20] (called “semi-party.x”). We simply invoke the MP-SPDZ
implementation as a black-box: wrapping each instance of “semi-party.x” in
a program which provides provides inputs/outputs to the party. Since MP-SPDZ
povides a universal interface our implementation is agnostic with regards to
the underlying MPC implementation: any reactive MPC in MP-SPDZ which
allows computation over F216+1 could be swapped in with ease.

2. Linear Dependence on the Number of Parties. A batched semi-honest version
of CDN [CDN01] where we instantiate the linearly homomorphic encryption
using the same ring LWE parameters described above. We implement this
ourselves again using the Lattigo (more information below) library for the
RLWE components.

CDN Implementation. We implement a semi-honest batched version of CDN, in-
stantiating the linearly homomorphic encryption using the same parameters described
above (the same as the OIP). To reduce the overhead (computational/communication)
induced by the homomorphic encryption we execute multiplications in batches of
212 (the dimension of the ring used for RLWE), by packing 212 independent shares
(over 0x10001) into a single ciphertext and execute the CDN multiplication protocol
on these in parallel. The decryption threshold is the full set of parties. The CDN
implement is included in the same repository. To the best of our knowledge, this is
the first known implementation of CDN.

Instantiating OIP and Ring LWE Parameters. In our implementation, we use an
optimized version of OIP. We observe that the O(n2) overhead incurred from the use
of pairwise-OIPs can be driven down to O(n), if instead of a regular linearly homo-
morphic encryption, we use a threshold linearly homomorphic encryption (TLHE).
TLHE are linearly homomorphic encryptions that comprise of a single public-key and
where each party holds a “share” of the secret key. This share of the secret key can
be used by the parties to decrypt to a share of the plaintext. As shown in [CHI+20],
the keys for RLWE based threshold linearly homomorphic encryption can be setup
very efficiently by the parties in a couple of rounds. At a high level, this observation
allows us to reuse the sender and receiver messages of each party across multiple
OIP instantiations and as a result, overall, each party only needs to send one receiver
message and one sender message.

Recall that in our semi-honest protocol, the receiver and sender messages in
all OIP instances are computed using the same shares of the index associated with

168
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

the active branch and the masks. Each party can compute its receiver message by
encrypting its shares of b1, . . . ,bk. Similarly, for the sender message, each party can
compute an inner-product of these encryptions received from all parties and its shares
of the permuted masks. Finally, all parties can add all the sender messages (which
are also ciphertexts) received from all parties. This gives them an encryption of the
permuted masks for the active branch. Now each party can run threshold decryption
using its share of the secret-key to obtain a sharing of the resulting inner-product.

We use BFV [FV12] over a cyclotomic ring of index 213 and dimension 212, i.e.
R[X]/(X212

+1) where: Q1 := 0x7ffffec001,Q2 := 0x8000016001,P := 0x40002001,
N := Q1Q2P,R := Z/(NZ). This gives us a linearly homomorphic encryption scheme
for vectors −→v ∈ (F216+1)

212
, which additionally allows (full) threshold decryption.

We use the Lattigo [lat21] library to implement all the RLWE components.

Benchmarking Platform. All benchmarks were run on a laptop with an Intel i7-
11800H CPU (@ 2.3 GHz) and 64 GB of RAM. All networking is over the loopback
interface and network latency was simulated using traffic control (tc) on Linux. We
also do not restrict the bandwidth when comparing running times – note that this
constitutes a relative “worst-case scenario” for our results: as our technique reduces
communication, the relative performance gain for many branches would only increase
by restricting bandwidth.

How The Branches Were Generated. During our benchmark each branch contained
216 uniformly random gates: each gate is a multiplication/addition gate with proba-
bility 1/2. We benchmark using “layered circuits”, meaning each level contains 212

gates which can be evaluated in parallel (to reduce the number of rounds). Subject
to the layering constraint, the wiring is otherwise random: the inputs to each gate
are sampled uniformly at random from all previous outputs (not just those in the last
layer). We believe this distribution over circuits form a realistic benchmark for the
expected performance across many real-world applications.

Averaging. We run all benchmarks 10 times and take the average.

Comparison of Communication Complexity

In Figure 6.8 and Figure 6.9, we compare the communication complexity of our
technique to the naïve baseline solution of evaluating each branch in parallel using the
underlying MPC. For the baseline solution we do not consider the additional overhead
of multiplexing the output, i.e., selecting the output of the active branch.

We observe that our technique improves communication over the baseline for both
CDN and MASCOT with 3 parties when the number of branches is ≥ 8. For less
than 8 branches the communication overhead of the RLWE-based OIP and the need
to evaluate universal gates (requiring the base-MPC to compute 3 multiplications)
outweighs the communication saving of only executing the active branch. Upon
reflection 8 branches is about the lowest number of branches we could hope to see

6.10. IMPLEMENTATION 169

savings for: recall that each branch contains ≈ 215 multiplications3, therefore the
parallel execution of 6 branches requires the same number of multiplications as that
of the 216 universal gates used in our technique. As expected we also observe that
the communication of our technique remains (nearly4) constant for any number of
branches.

Lastly we fix the number of branches to 16 and plot (in Figure 6.10) the commu-
nication complexity of our technique for a varying number of parties, as expected the
communication of our compiler applied to MASCOT increases quadratically, while
our technique preserves the linearly increasing communication of CDN; constant
per-party communication (and computation).

Comparison of Running Time

From Figure 6.8 and Figure 6.9, we observe that for sufficiently many branches our
technique also reduces running time over the baseline for both CDN and semi-honest
MASCOT. This is also expected: after the relatively high constant overhead of our tech-
nique, the marginal cost of adding another branch (of length ℓ) is that of: (1) O(ℓ) lin-
ear operations in the underlying MPC. (2) O(ℓ) ⟨ciphertext⟩×⟨plaintext⟩ operations
in the RLWE based homomorphic encryption scheme. (3) O(ℓ) ⟨ciphertext⟩+⟨ciphertext⟩
operations in the RLWE based homomorphic encryption scheme.

The first one introduces a very small cost (essentially that of reading the branch),
the second is dominated by the cost of doing a number theoretic transform (NTT) on
the plaintext (the players local share), which again is essentially that of computing
a small constant number of fixed-size FFTs. We note that the NTTs are computed
on random shares and could be relegated to a pre-computation phase. The final
ciphertext/ciphertext addition is just a constant number of entry-wise additions of
vectors in a small prime field – the cost of which is miniscule. Looking at Figure 6.8
and Figure 6.9 we observe that this marginal computational cost (of doing NTTs) has
a higher influence when the network latency is low and quickly becomes insignificant
as the latency increases.

3Since the type of each gate in each branch is sampled uniformly at random.
4It grows slightly, since the unary representation of the selection wire must be shared/computed.

However the computation of the branch completely dominates the communication.

170
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Preprocessing Phase of the Maliciously Secure Protocol

The protocol is described in the Fmpc-hybrid model. Parties have shares of the inputs to the branches,
i.e., [x1], . . . , [xℓ] and shares of a unary representation of the active branch, i.e., [b1], . . . , [bk]. Let
δ = κ/0.311, where κ is the statistical security parameter.
Pre-processing Phase:

1. Sample masks: For each wire w ∈ [W], parties invoke (rand,mask1
w), . . . ,(rand,maskδ

w) in Fmpc

to obtain shares [mask1
w], . . . , [maskδ

w] respectively. For each q ∈ [δ], m ∈ [k], let [
−−−−→
maskq

πm] =
[maskq

πm(1)
]∥ . . .∥[maskq

πm(W)
].

2. Shares of zeros: For each q ∈ [δ], w ∈ [W] and i ∈ [n], the parties invoke (sharezero,Xw,i) in Fmpc

to get shares [Xq
w,i], where Xq

w,i = 0. For each i ∈ [n], let [
−→
Xq

i] = [Xq
1,i]∥ . . .∥[X

q
k,i].

3. Pairwise OIP: Each pair of parties PR and PS (∀R,S ∈ [n]) engage in two-message (malicious
receiver) OIPs as follows, where PR and PS act as the receiver and sender resp.:

• Receiver: PR compute (ρ,msgR→S)← OIPR(1λ , [b1]R, . . . , [bk]R), send msgR to PS.

• Sender: For each q ∈ [δ], PS samples random values rq
0, . . . ,r

q
k ∈ Fk+1 and does the following:

– Computes:

msgq
S→R← OIPS(1λ ,msgR→S, [

−→
Xq
R]S∥r

q
0, [
−−−−→
maskq

π1]S∥r
q
1, . . . , [

−−−−→
maskq

πk]S∥r
q
k ;ρ

S,q
R,S)

cq
R,S← Commit([

−→
Xq
R]S∥r

q
0, [
−−−−→
maskq

π1]S∥r
q
1, . . . , [

−−−−→
maskq

πk]S∥r
q
k ,ρ

S,q
R,S;ρ

c,q
R,S)

– It sends msgq
S→R,c

q
R,S to PR.

• Output: For each q ∈ [δ], PR computes
−−−−−→
shareR,S∥macq

R,S← OIPout(ρ,msgR→S,msgS→R).

• Receiver Consistency check: For each q ∈ [δ], PS invokes (initinp,rq
0,PS). . . . ,(initinp,rq

k ,PS)
and PR invokes (initinp,macq

R,S,PR) in Fmpc. The parties then collectively invoke
(f unc,F q

mac,r
q
0,r

q
1, . . . ,r

q
k , [b1]R, . . . , [bk]R,out

q
mac), where F q

mac(r
q
0,r

q
1, . . . ,r

q
k , [b1]R, . . . , [bk]R) =

rq
0 +∑m∈[k][bm]Rrq

m. Finally, the parties invoke (checkzero,outq
mac,macq

R,S) to check if outq
mac

?
=

macq
R,S.

4. Sender Consistency Check: The parties use Fmpc to sample a random subset Z ⊂ [δ] of size δ/2
and then proceed as follows:

• For each q ∈ Z, they invoke (outshare,maskq
π1), . . . ,(outshare,maskq

πk) and for each i ∈ [n],w ∈
[W], they invoke (outshare,Xq

w,i) in Fmpc to obtain all the shares of maskq
π1 . . . ,maskq

πk and Xq
w,i.

• For each q ∈ Z, each pair of parties PR and PS (∀R,S ∈ [n]) do the following:

a) PS sends rq
0,r

q
1, . . . ,r

q
k ,ρ

S,q
R,S,ρ

c,q
R,S to PR.

b) PR checks:

msgq
S→R

?
= OIPS(1λ ,msgR→S, [

−→
Xq
R]S∥r

q
0, [
−−−−→
maskq

π1]S∥r
q
1, . . . , [

−−−−→
maskq

πk]S∥r
q
k ;ρ

S,q
R,S)

cq
R,S

?
= Commit([

−→
Xq
R]S∥r

q
0, [
−−−−→
maskq

π1]S∥r
q
1, . . . , [

−−−−→
maskq

πk]S∥r
q
k ,ρ

S,q
R,S;ρ

c,q
R,S)

5. ∆ values: If all the above checks succeed, then for each q ∈ [δ] \ Z, each party Pi (for i ∈ [n])

computes [
−→
∆ j]i = ∑ j∈[n]

−−−−→
shareq

j,i, where [
−→
∆ q] = [∆q

1]∥ . . .∥[∆
q
W].

Figure 6.3: Pre-processing Phase of the Maliciously Secure Compiler

6.10. IMPLEMENTATION 171

Online Phase of the Maliciously Secure Protocol

Online Phase : For each q ∈ [δ]\Z, parties compute the following:

1. Inputs: For each input wire i ∈ [ℓ], parties compute [uq
i] = [xi]+ [maski] and invoke (out,uq

i) in
Fmpc to obtain uq

i in the clear.

2. Circuit Evaluation: For each gate g∈ [G], let left= ℓ+2g−1 and right= ℓ+2g be the incomining
wire labels of its input wires. Let typem,g be the gate type for gate g in Cm (∀m ∈ [k]), where
typem,g = 0 denotes an addition gate and typem,g = 1 denotes a multiplication gate.

a) For w ∈ {left, right}, compute [yq
w] = ∑

k
m=1

(
uq

πm(w)
· [bm]

)
+[∆q

w].

b) Compute [typeg] = ∑
k
m=1

(
typem,g · [bm]

)
c) Compute [zq

g] = (1− [typeg])([y
q
left]+ [yq

right])+ [typeg]([y
q
left] · [y

q
right]).

d) Compute [uq
ℓ+g] = [zq

g]+ [maskℓ+g] and invoke (out,uq
ℓ+g) in Fmpc to obtain uq

ℓ+g in the clear.

3. For each output gate g, compute [zq
g] = ∑

k
m=1

(
uq

πm(w)
· [bm]

)
+[∆q

w].

Output For each output gate g, the parties invoke (f unc,maj,z1
g, . . . ,z

δ
g ,zg) to get shares [zg], where

the maj is the majority function.

Figure 6.4: Online Phase of the Maliciously Secure Compiler

172
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Garbling Phase of the Constant Round Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model which computes over Rp. The
parties have shares of a unary representation of the active branch, i.e., [b1], . . . , [bk]. For
each gate g ∈ [G], let leftg = ℓ+2g−1 and rightg = ℓ+2g be the incoming wire labels
of its input wires and let outg = ℓ+g be the outgoing wire.

1. Sample masks: For each input and gate g∈ [ℓ+G], the parties invoke (randbit,γg) in
Fmpc to obtain shares [γg]. For each branch m ∈ [k], let [−→γπm] = [γπm(1)]∥ . . .∥[γπm(W)].

2. Sample keys: For each g ∈ [ℓ+G], and j ∈ {0,1} each party Pi (for i ∈ [n]) locally
samples its share [k j

g]i← χN and sets the last coordinate of its share to 0.

3. Compute LWE expansions: For each u,v ∈ {0,1}, g ∈ [G] each party Pi (for i ∈ [n])
locally samples δ

u,v,i
m,g ← χN and computes [ψu,v

m,g]i = Au,v
g ·([kπm(leftg)]i+[kπm(rightg)

]
i
)+

δ
u,v,i
m,g . Let [−→ψm] = [ψ0,0

m,1]∥[ψ
0,1
m,1]∥[ψ

1,0
m,1]∥[ψ

1,1
m,1]∥ . . .∥[ψ

0,0
m,G]∥[ψ

0,1
m,G]∥[ψ

1,0
m,G]∥[ψ

1,1
m,G].

4. Shares of zero: For each i ∈ [n] and j ∈ [W +4G], the parties invoke (sharezero,X j,i)

in Fmpc to get shares [X j,i], where X j,i = 0. For each i ∈ [n], let [
−→
Xi] =

[X1,i]∥ . . .∥[XW+4G,i].

5. Pairwise OIP: Each pair of parties PR and PS (∀R,S ∈ [n]) engage in a two-message
semi-honest OIP as follows, where PR acts as the receiver and PS acts as the sender:

• Receiver: PR computes (ρ,msgR) ← OIPR(1λ , [b1]R, . . . , [bk]R) and sends
msgR to PS.

• Sender: For each m ∈ [1,k] let [−→xm] = [−→γπm]∥[
−→
ψm]. PS computes msgS ←

OIPS(1λ ,msgR, [
−→
XR]S, [

−→x1]S, . . . , [
−→xk]S) and sends msgS to PR.

• Output: PR computes
−−−−−→
shareR,S← OIPout(ρ,msgR,msgS).

For each i ∈ [n], Pi computes [
−→
Γ]∥[
−→
Ψ] = ∑ j∈[n]

−−−−→
share j,i where

−→
Γ = Γ1∥ . . .∥ΓW and

−→
Ψ = Ψ

0,0
1 ∥Ψ

0,1
1 ∥Ψ

1,0
1 ∥Ψ

1,1
1 ∥ . . .∥Ψ

0,0
G ∥Ψ

0,1
G ∥Ψ

1,0
G ∥Ψ

1,1
G .

6. Garble active branch: Let typem,g be the gate type for gate g in Cm (∀m ∈ [k]), where
typem,g = 0 denotes an XOR gate and typem,g = 1 denotes an AND gate. Parties do
the following for each g ∈ [G]

a) Compute [typeg] = ∑
k
m=1

(
typem,g · [bm]

)
.

b) For each u,v ∈ {0,1} let exor
u,v,g = u⊕Γleftg ⊕ v⊕Γrightg ⊕ γoutg , eand

u,v,g = ((u⊕
Γleftg)∧ (v⊕ Γrightg))⊕ γoutg , eu,v

g = typeg(eand
u,v,g − exor

u,v,g) + exor
u,v,g and Ku,v

g =

eu,v
g (k1

outg − k0
outg) + k0

outg . For each u,v ∈ {0,1}, compute [Ku,v
g ∥eu,v

g] using
Fmpc.

c) For each u,v ∈ {0,1} compute [Cu,v
g] = [Ψu,v

g]+ ⌈√p⌉[Ku,v
g ∥eu,v

g].

Figure 6.5: Garbling phase of the constant round (semi-honest) protocol

6.10. IMPLEMENTATION 173

Evaluation Phase of the Constant Round Semi-Honest Protocol

The protocol is described in the Fmpc-hybrid model. The parties have shares of the inputs
to the branches, i.e., [x1], . . . , [xℓ] and shares of a unary representation of the active branch,
i.e., [b1], . . . , [bk].

1. For each input wire w∈ [ℓ] parties compute [βw] = [xw]⊕ [γw] and invoke (out, [βw])
in Fmpc to obtain βw. For each w ∈ [ℓ], let β1,w = . . .= βk,w = βw.

2. For each input wire w ∈ [ℓ] parties invoke (out, [kβw
w]) in Fmpc to obtain kβw

w . For
each w ∈ [ℓ], let Kβw

1,w = . . .= Kβw
k,w = kβw

w .

3. For each u,v ∈ {0,1} and g ∈ [G] parties invoke (out, [Cu,v
g]) in Fmpc to obtain

Cu,v
g .

4. For each m ∈ [k] and g ∈ [G], parties compute Cu,v
g − Au,v

g ·(
Ku

m,πm(leftg)
+Kv

m,πm(rightg)

)
, where u = βm,πm(leftg) and v = βm,πm(rightg)

,

and divide it by ⌈√p⌉ to remove the error and recover K
βm,outg
m,outg ∥βm,outg .

5. For each output gate g, parties compute [zg] = ∑
k
m=1 βm,outg [bm]⊕ [γg] using Fmpc.

Figure 6.6: Evaluation phase of the constant round (semi-honest) protocol

174
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Two-message Semi-honest OIP from Linearly Homomorphic encryption.

Let (KGen,Enc,Dec,Eval) be a linearly homomorphic encryption. The parties proceed
as follows:

Receiver: The receiver with inputs b1, . . . ,bk ∈M , proceeds as follows:

• It computes (pk,sk)← KGen(1λ).

• For each i ∈ [k], it computes ci← Enc(pk,bi).

• It sends msgR = (pk,c1, . . . ,ck) to the sender.

Sender: The sender with inputs −→m0, . . . ,
−→mk ∈M m×(k+1), parses msgR = (pk,c1, . . . ,ck)

and computes the following for each j ∈ [m],:

• It computes c0← Enc(pk,m0[j]).

• It sets L j to be the linear function L j(x1, . . . ,xk) = ∑i∈[k] xi ·−→m i[j], where −→mi[j] is
the jth element in the vector −→mi.

• It computes cL j ← Eval(pk,L j,c1, . . . ,ck)+ c0.

It sends msgS = (cL1 , . . . ,cLm) to the receiver.

Output: The receiver parses msgS = (cL1 , . . . ,cLm) and for each j ∈ [m], it computes
−→x [j]← Dec(sk,cL j) and outputs −→x .

Figure 6.7: Two-message semi-honest OIP from linearly homomorphic encryption.

6.10. IMPLEMENTATION 175

Local (0ms Network Latency)

LAN (10ms Network Latency)

WAN (100ms Network Latency)

Figure 6.8: Running time of Branching MPC with CDN.

176
CHAPTER 6. SECURE MULTIPARTY COMPUTATION WITH FREE

BRANCHING

Local (0ms Network Latency)

LAN (10ms Network Latency)

WAN (100ms Network Latency)

Figure 6.9: Running time of Branching MPC with Semi-Honest MASCOT.

6.10. IMPLEMENTATION 177

Local (0ms Network Latency)

LAN (10ms Network Latency)

WAN (100ms Network Latency)

Figure 6.10: Running time of Branching MPC for Different Number of Parties.

Bibliography

[ABFV22] Gennaro Avitabile, Vincenzo Botta, Daniele Friolo, and Ivan Visconti.
Efficient proofs of knowledge for threshold relations. Cryptology
ePrint Archive, Report 2022/746, 2022. https://eprint.iacr.
org/2022/746. 49, 77, 80

[AC20] Thomas Attema and Ronald Cramer. Compressed Σ -protocol theory
and practical application to plug & play secure algorithmics. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III,
volume 12172 of LNCS, pages 513–543. Springer, Heidelberg, August
2020. 39, 62, 110

[ACD+16] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss,
Ryo Nishimaki, and Miyako Ohkubo. Constant-size structure-
preserving signatures: Generic constructions and simple assumptions.
Journal of Cryptology, 29(4):833–878, October 2016. 105

[ACF20] Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs
of k-out-of-n partial knowledge. 2020. https://eprint.iacr.org/
2020/753. 37, 39

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. A compressed Σ -
protocol theory for lattices. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 549–579, Virtual
Event, August 2021. Springer, Heidelberg. 93

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-friendly
family of cryptographic primitives. Cryptology ePrint Archive, Report
2018/1098, 2018. https://eprint.iacr.org/2018/1098. 19

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venki-
tasubramaniam. Ligero: Lightweight sublinear arguments without a
trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM
Press, October / November 2017. 37, 38, 45, 46, 67, 68, 72, 73, 76, 88,
89

179

https://eprint.iacr.org/2022/746
https://eprint.iacr.org/2022/746
https://eprint.iacr.org/2020/753
https://eprint.iacr.org/2020/753
https://eprint.iacr.org/2018/1098

180 BIBLIOGRAPHY

[AJ18] Kurt M. Alonso and Jordi Herrera Joancomartí. Monero - privacy in
the blockchain. Cryptology ePrint Archive, Report 2018/535, 2018.
https://eprint.iacr.org/2018/535. 131

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n
signatures from a variety of keys. In Yuliang Zheng, editor, ASI-
ACRYPT 2002, volume 2501 of LNCS, pages 415–432. Springer, Hei-
delberg, December 2002. 16, 35, 36, 39, 41, 57

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018. 35,
110, 111

[BBC+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully
linear PCPs. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 67–97. Springer,
Heidelberg, August 2019. 15

[BBD+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem,
Michael Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl.
Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-head. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 581–
615. Springer, Heidelberg, August 2023. 17

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for
accumulators with applications to IOPs and stateless blockchains. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 561–586. Springer, Heidelberg,
August 2019. 132

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational integrity.
Cryptology ePrint Archive, Report 2018/046, 2018. https://eprint.
iacr.org/2018/046. 19

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable zero knowledge with no trusted setup. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694
of LNCS, pages 701–732. Springer, Heidelberg, August 2019. 19

[BC23] Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumu-
lation/folding for special sound protocols. Cryptology ePrint Archive,
Paper 2023/620, 2023. https://eprint.iacr.org/2023/620. 19

https://eprint.iacr.org/2018/535
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2023/620

BIBLIOGRAPHY 181

[BCC+15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens
Groth, and Christophe Petit. Short accountable ring signatures based
on DDH. In Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl,
editors, ESORICS 2015, Part I, volume 9326 of LNCS, pages 243–265.
Springer, Heidelberg, September 2015. 37

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recur-
sive composition and bootstrapping for SNARKS and proof-carrying
data. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 111–120. ACM Press, June 2013. 19

[BCD+17] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyan-
skaya, Leonid Reyzin, Kai Samelin, and Sophia Yakoubov. Accu-
mulators with applications to anonymity-preserving revocation. 2017
IEEE European Symposium on Security and Privacy (EuroS&P), pages
301–315, 2017. 106

[BCF+21] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and
Dimitris Kolonelos. Zero-knowledge proofs for set membership: Effi-
cient, succinct, modular. In Nikita Borisov and Claudia Diaz, editors,
Financial Cryptography and Data Security, pages 393–414, Berlin,
Heidelberg, 2021. Springer Berlin Heidelberg. 104

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013. 18, 36

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459–474. IEEE Computer Society Press,
May 2014. 18, 35

[BCG+18] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and
Mary Maller. Arya: Nearly linear-time zero-knowledge proofs for
correct program execution. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages 595–
626. Springer, Heidelberg, December 2018. 18

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Com-
pressing vector OLE. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 896–912.
ACM Press, October 2018. 17

182 BIBLIOGRAPHY

[BCL+21] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and
Nicholas Spooner. Proof-carrying data without succinct arguments. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume
12825 of LNCS, pages 681–710, Virtual Event, August 2021. Springer,
Heidelberg. 19

[BCMS20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas
Spooner. Recursive proof composition from accumulation schemes. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 1–18. Springer, Heidelberg, November 2020. 19

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas
Spooner, Madars Virza, and Nicholas P. Ward. Aurora: Transpar-
ent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
103–128. Springer, Heidelberg, May 2019. 35

[BCTV14a] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Scalable zero knowledge via cycles of elliptic curves. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 276–294. Springer, Heidelberg, August 2014. 19

[BCTV14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Succinct non-interactive zero knowledge for a von neumann architec-
ture. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014,
pages 781–796. USENIX Association, August 2014. 35, 36

[Bd94] Josh Cohen Benaloh and Michael de Mare. One-way accumulators:
A decentralized alternative to digital sinatures (extended abstract). In
Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages
274–285. Springer, Heidelberg, May 1994. 18, 106

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records.
In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin,
editors, PKC 2006, volume 3958 of LNCS, pages 207–228. Springer,
Heidelberg, April 2006. 80

[BFB21] Guillaume Ballet, Dankrad Feist, and Vitalik Buterin. Verkle tree
EIP, 2021. https://notes.ethereum.org/@vbuterin/verkle_
tree_eip. 107

[BG93] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
390–420. Springer, Heidelberg, August 1993. 10, 11

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof
composition without a trusted setup. Cryptology ePrint Archive, Report
2019/1021, 2019. https://eprint.iacr.org/2019/1021. 19

https://notes.ethereum.org/@vbuterin/verkle_tree_eip
https://notes.ethereum.org/@vbuterin/verkle_tree_eip
https://eprint.iacr.org/2019/1021

BIBLIOGRAPHY 183

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size
barrier for secure computation under DDH. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 509–539. Springer, Heidelberg, August 2016. 21, 133

[BGJK21] Gabrielle Beck, Aarushi Goel, Abhishek Jain, and Gabriel Kaptchuk.
Order-C secure multiparty computation for highly repetitive circuits.
In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part II, volume 12697 of LNCS, pages 663–693. Springer,
Heidelberg, October 2021. 133

[BGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK friendly
hash – survey and recommendation. Cryptology ePrint Archive, Report
2020/948, 2020. https://eprint.iacr.org/2020/948. 107

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May
1988. 63, 85, 133

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
Elligator: elliptic-curve points indistinguishable from uniform random
strings. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013, pages 967–980. ACM Press, November 2013.
46

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth
Raghunathan. Key homomorphic PRFs and their applications. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 410–428. Springer, Heidelberg, August 2013.
144

[BLO17] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Efficient scalable
constant-round MPC via garbled circuits. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of
LNCS, pages 471–498. Springer, Heidelberg, December 2017. 143,
144, 145, 161, 162

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim it.
pages 1444–1451, 1987. 38, 58, 62, 82

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round com-
plexity of secure protocols (extended abstract). In 22nd ACM STOC,
pages 503–513. ACM Press, May 1990. 135, 142

[BMRS20] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for arithmetic circuits with

https://eprint.iacr.org/2020/948

184 BIBLIOGRAPHY

nested disjunctions. Cryptology ePrint Archive, Report 2020/1410,
2020. https://eprint.iacr.org/2020/1410. 40

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl.
Mac’n’cheese: Zero-knowledge proofs for boolean and arithmetic
circuits with nested disjunctions. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 92–122,
Virtual Event, August 2021. Springer, Heidelberg. 17

[BPRS23] Lennart Braun, Mahak Pancholi, Rahul Rachuri, and Mark Simkin.
Ramen: Souper fast three-party computation for ram programs. Cryp-
tology ePrint Archive, Paper 2023/310, 2023. https://eprint.iacr.
org/2023/310. 21

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993. 13

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886.
Springer, Heidelberg, August 2012. 27

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty un-
conditionally secure protocols (abstract) (informal contribution). In
Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, page 462.
Springer, Heidelberg, August 1988. 133

[CD98] Ronald Cramer and Ivan Damgård. Zero-knowledge proofs for fi-
nite field arithmetic; or: Can zero-knowledge be for free? In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 424–441.
Springer, Heidelberg, August 1998. 61, 73

[CDE+18] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPDZ2k: Efficient MPC mod 2k for dishonest majority.
Cryptology ePrint Archive, Report 2018/482, 2018. https://eprint.
iacr.org/2018/482. 133, 135, 138, 144, 149

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty
computation from threshold homomorphic encryption. In Birgit Pfitz-
mann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280–
299. Springer, Heidelberg, May 2001. 20, 27, 135, 136, 149, 167

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of
partial knowledge and simplified design of witness hiding protocols.
In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages

https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2023/310
https://eprint.iacr.org/2023/310
https://eprint.iacr.org/2018/482
https://eprint.iacr.org/2018/482

BIBLIOGRAPHY 185

174–187. Springer, Heidelberg, August 1994. 16, 23, 35, 36, 39, 41,
58, 79, 96

[CFGG22] Dario Catalano, Dario Fiore, Rosario Gennaro, and Emanuele Giunta.
On the impossibility of algebraic vector commitments in pairing-free
groups. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022,
Part II, volume 13748 of LNCS, pages 274–299. Springer, Heidelberg,
November 2022. 106

[CFH+22] Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris
Kolonelos, and Hyunok Oh. Succinct zero-knowledge batch proofs
for set accumulators. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 455–469. ACM Press,
November 2022. 104

[CFQ19] Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK:
Modular design and composition of succinct zero-knowledge proofs.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, Novem-
ber 2019. 105

[CGG+23] Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and
Rohit Sinha. Sublonk: Sublinear prover plonk. Cryptology ePrint
Archive, Paper 2023/902, 2023. https://eprint.iacr.org/2023/
902. 16, 17

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited (preliminary version). In 30th ACM STOC,
pages 209–218. ACM Press, May 1998. 13

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC
for malicious adversaries. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 34–64.
Springer, Heidelberg, August 2018. 133

[CHA21] Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, ef-
ficient, anonymous payments with large anonymity sets from well-
studied assumptions. Cryptology ePrint Archive, Report 2021/327,
2021. https://ia.cr/2021/327. 104, 105, 124

[CHA22a] Matteo Campanelli and Mathias Hall-Andersen. Curve trees: Practi-
cal and transparent zero-knowledge accumulators. Cryptology ePrint
Archive, Report 2022/756, 2022. https://eprint.iacr.org/
2022/756. 18

https://eprint.iacr.org/2023/902
https://eprint.iacr.org/2023/902
https://ia.cr/2021/327
https://eprint.iacr.org/2022/756
https://eprint.iacr.org/2022/756

186 BIBLIOGRAPHY

[CHA22b] Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, ef-
ficient, anonymous payments with large anonymity sets from well-
studied assumptions. In Yuji Suga, Kouichi Sakurai, Xuhua Ding,
and Kazue Sako, editors, ASIACCS 22, pages 652–666. ACM Press,
May / June 2022. 18

[CHA22c] Matteo Campanelli and Mathias Hall-Andersen. Veksel: Simple, ef-
ficient, anonymous payments with large anonymity sets from well-
studied assumptions. In Proceedings of the 2022 ACM on Asia Con-
ference on Computer and Communications Security, pages 652–666,
2022. 124, 131

[CHI+20] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele
Micciancio, Tarik Riviere, abhi shelat, Muthu Venkitasubramaniam,
and Ruihan Wang. Diogenes: Lightweight scalable RSA modulus gen-
eration with a dishonest majority. Cryptology ePrint Archive, Report
2020/374, 2020. https://eprint.iacr.org/2020/374. 104, 167

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and
Leonid Reyzin. Mercurial commitments with applications to zero-
knowledge sets. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 422–439. Springer, Heidelberg, May 2005. 106

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. 25

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76.
Springer, Heidelberg, August 2002. 106

[CL15] Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic
encryption from DDH. In Kaisa Nyberg, editor, CT-RSA 2015, volume
9048 of LNCS, pages 487–505. Springer, Heidelberg, April 2015. 137,
154, 166

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practi-
cal verified computation with streaming interactive proofs. In Shafi
Goldwasser, editor, ITCS 2012, pages 90–112. ACM, January 2012. 8

[Con22] Graeme Connell. Signal blog: Technology deep dive: Building a
faster ORAM layer for enclaves, 2022. https://signal.org/blog/
building-faster-oram/. 21

https://eprint.iacr.org/2020/374
https://signal.org/blog/building-faster-oram/
https://signal.org/blog/building-faster-oram/

BIBLIOGRAPHY 187

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 769–793. Springer, Heidelberg, May 2020. 17,
19

[CP93] David Chaum and Torben P. Pedersen. Transferred cash grows in size.
In Rainer A. Rueppel, editor, EUROCRYPT’92, volume 658 of LNCS,
pages 390–407. Springer, Heidelberg, May 1993. 62, 73

[CP14] Nikolaos Triandopoulos Charalampos Papamanthou, Roberto Tamassia.
U.S Patent. US9098725B2, Cryptographic accumulators for authenti-
cated hash tables, 2014. https://patents.google.com/patent/
US9098725B2/en. 107

[CPS+16] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Sinis-
calchi, and Ivan Visconti. Online/offline OR composition of sigma
protocols. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 63–92. Springer,
Heidelberg, May 2016. 39, 42

[CS97] Jan Camenisch and Markus Stadler. Proof systems for general state-
ments about discrete logarithms. 1997. 14, 109

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay
arguments from signature cards. In Andrew Chi-Chih Yao, editor, ICS
2010, pages 310–331. Tsinghua University Press, January 2010. 19

[Dam92] Ivan Damgård. Towards practical public key systems secure against
chosen ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 445–456. Springer, Heidelberg, August
1992. 11, 12

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty compu-
tation using a black-box pseudorandom generator. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 378–394. Springer,
Heidelberg, August 2005. 143

[DILO22] Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Improv-
ing line-point zero knowledge: Two multiplications for the price of one.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 829–841. ACM Press, November 2022. 17

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-Point Zero
Knowledge and Its Applications. In Stefano Tessaro, editor, 2nd Confer-
ence on Information-Theoretic Cryptography (ITC 2021), volume 199

https://patents.google.com/patent/US9098725B2/en
https://patents.google.com/patent/US9098725B2/en

188 BIBLIOGRAPHY

of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–
5:24, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. 17

[DJ01] Ivan Damgård and Mats Jurik. A generalisation, a simplification and
some applications of Paillier’s probabilistic public-key system. In
Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages 119–
136. Springer, Heidelberg, February 2001. 137, 154, 166

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.
133, 136, 138, 144, 149

[DT08] Ivan Damgård and Nikos Triandopoulos. Supporting non-membership
proofs with bilinear-map accumulators. Cryptology ePrint Archive, Re-
port 2008/538, 2008. https://eprint.iacr.org/2008/538. 106

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random func-
tion with short proofs and keys. In Serge Vaudenay, editor, PKC 2005,
volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January
2005. 127

[Eag22] Liam Eagen. Bulletproofs++. Cryptology ePrint Archive, Report
2022/510, 2022. https://eprint.iacr.org/2022/510. 18

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic
group model and its applications. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS,
pages 33–62. Springer, Heidelberg, August 2018. 12

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider,
Dominique Schröder, and Mark Simkin. Efficient unlinkable sanitizable
signatures from signatures with re-randomizable keys. In Chen-Mou
Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part I, volume 9614 of LNCS, pages 301–330. Springer,
Heidelberg, March 2016. 125

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter
Scholl. A unified approach to mpc with preprocessing using ot. In
Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology –
ASIACRYPT 2015, pages 711–735, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg. 135

https://eprint.iacr.org/2008/538
https://eprint.iacr.org/2022/510

BIBLIOGRAPHY 189

[FLPS20] Prastudy Fauzi, Helger Lipmaa, Zaira Pindado, and Janno Siim.
Somewhere statistically binding commitment schemes with applica-
tions. Cryptology ePrint Archive, Report 2020/652, 2020. https:
//eprint.iacr.org/2020/652. 51

[FMMO19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Or-
landi. Quisquis: A new design for anonymous cryptocurrencies. In
Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part I, volume 11921 of LNCS, pages 649–678. Springer, Heidelberg,
December 2019. 131

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Or-
landi. Privacy-free garbled circuits with applications to efficient zero-
knowledge. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 191–219. Springer,
Heidelberg, April 2015. 40

[FOSZ23] Brett Falk, Rafail Ostrovsky, Matan Shtepel, and Jacob Zhang. GigaDO-
RAM: Breaking the billion address barrier. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 3871–3888, Anaheim, CA,
August 2023. USENIX Association. 21

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko,
editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987. 36, 37, 57, 80, 117

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012. https://eprint.iacr.org/2012/144. 27, 137, 154, 166,
168

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009. 133

[GGHAK22] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel
Kaptchuk. Stacking sigmas: A framework to compose Σ -protocols
for disjunctions. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 458–487.
Springer, Heidelberg, May / June 2022. 16, 17, 23

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. 36

https://eprint.iacr.org/2020/652
https://eprint.iacr.org/2020/652
https://eprint.iacr.org/2012/144

190 BIBLIOGRAPHY

[GHAHJ22] Aarushi Goel, Mathias Hall-Andersen, Aditya Hegde, and Abhishek
Jain. Secure multiparty computation with free branching. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part I, volume 13275 of LNCS, pages 397–426. Springer, Heidelberg,
May / June 2022. 20, 25, 26

[GHAK23] Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk. Dora:
Processor expressiveness is (nearly) free in zero-knowledge for ram
programs. Cryptology ePrint Archive, Paper 2023/1749, 2023. https:
//eprint.iacr.org/2023/1749. 17

[GHAKS23] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas
Spooner. Speed-stacking: Fast sublinear zero-knowledge proofs for
disjunctions. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part II, volume 14005 of LNCS, pages 347–378. Springer,
Heidelberg, April 2023. 17

[Gil52] E. N. Gilbert. A comparison of signalling alphabets. The Bell System
Technical Journal, 31(3):504–522, 1952. 7

[GK90] Oded Goldreich and Hugo Krawczyk. On the composition of zero-
knowledge proof systems. In International Colloquium on Automata,
Languages and Programming, 1990. 9

[GK15] Jens Groth and Markulf Kohlweiss. One-out-of-many proofs: Or how
to leak a secret and spend a coin. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 253–280. Springer, Heidelberg, April 2015. 39

[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assump-
tions: A position paper. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 505–522. Springer,
Heidelberg, January 2016. 12

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegat-
ing computation: interactive proofs for muggles. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM
Press, May 2008. 8

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. Poseidon: A new hash function for zero-
knowledge proof systems. In Michael Bailey and Rachel Greenstadt,
editors, USENIX Security 2021, pages 519–535. USENIX Association,
August 2021. 18, 19, 107, 130

[GLO+21] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou,
and Yifan Song. ATLAS: Efficient and scalable MPC in the honest ma-
jority setting. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,

https://eprint.iacr.org/2023/1749
https://eprint.iacr.org/2023/1749

BIBLIOGRAPHY 191

Part II, volume 12826 of LNCS, pages 244–274, Virtual Event, August
2021. Springer, Heidelberg. 133, 138, 144

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th
ACM STOC, pages 291–304. ACM Press, May 1985. 35

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on Computing,
18(1):186–208, 1989. 9, 10

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield
nothing but their validity and a methodology of cryptographic proto-
col design (extended abstract). In 27th FOCS, pages 174–187. IEEE
Computer Society Press, October 1986. 35

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987. 20, 133, 140

[GMY03] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening
zero-knowledge protocols using signatures. In Eli Biham, editor, EU-
ROCRYPT 2003, volume 2656 of LNCS, pages 177–194. Springer,
Heidelberg, May 2003. 35

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-
knowledge proof systems. Journal of Cryptology, 7(1):1–32, December
1994. 68

[GO96a] Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious rams. J. ACM, 43(3):431–473, may 1996. 21

[GO96b] Oded Goldreich and Rafail Ostrovsky. Software protection and simula-
tion on oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996.
21

[Gol87] Oded Goldreich. Towards a theory of software protection and simu-
lation by oblivious RAMs. In Alfred Aho, editor, 19th ACM STOC,
pages 182–194. ACM Press, May 1987. 21

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications,
volume 2. Cambridge University Press, Cambridge, UK, 2004. 145

[GOP+16] Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos, Roberto
Tamassia, and Nikos Triandopoulos. Zero-knowledge accumulators
and set algebra. In Jung Hee Cheon and Tsuyoshi Takagi, editors,

192 BIBLIOGRAPHY

ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 67–100.
Springer, Heidelberg, December 2016. 106

[GPS21] Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Unconditional
communication-efficient MPC via hall’s marriage theorem. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part II, volume
12826 of LNCS, pages 275–304, Virtual Event, August 2021. Springer,
Heidelberg. 133

[GQ90] Louis C. Guillou and Jean-Jacques Quisquater. A “paradoxical”
indentity-based signature scheme resulting from zero-knowledge. In
Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages
216–231. Springer, Heidelberg, August 1990. 38, 45, 61

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 321–340. Springer, Heidelberg, December 2010. 36

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg,
May 2016. 35, 36

[GS20] Vipul Goyal and Yifan Song. Malicious security comes free in honest-
majority MPC. Cryptology ePrint Archive, Report 2020/134, 2020.
https://eprint.iacr.org/2020/134. 133

[GSY21] S. Dov Gordon, Daniel Starin, and Arkady Yerukhimovich. The more
the merrier: Reducing the cost of large scale MPC. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II,
volume 12697 of LNCS, pages 694–723. Springer, Heidelberg, October
2021. 133

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive
arguments from all falsifiable assumptions. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press,
June 2011. 12, 13

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified
polynomial protocol for lookup tables. Cryptology ePrint Archive,
Report 2020/315, 2020. https://eprint.iacr.org/2020/315. 18

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive ar-
guments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953. 17, 18, 25, 107

https://eprint.iacr.org/2020/134
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953

BIBLIOGRAPHY 193

[Hab22] Ulrich Haböck. Multivariate lookups based on logarithmic deriva-
tives. Cryptology ePrint Archive, Report 2022/1530, 2022. https:
//eprint.iacr.org/2022/1530. 18

[HBHW21] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification, version 2021.2.16 [nu5 proposal], 2021. 18, 104,
107

[HK20a] David Heath and Vladimir Kolesnikov. Stacked garbling - garbled
circuit proportional to longest execution path. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171
of LNCS, pages 763–792. Springer, Heidelberg, August 2020. 40, 134,
136, 137

[HK20b] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive
zero-knowledge proofs. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 569–598.
Springer, Heidelberg, May 2020. 16, 20, 35, 36, 37, 40, 41

[HK21] David Heath and Vladimir Kolesnikov. LogStack: Stacked garbling
with O(b logb) computation. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS,
pages 3–32. Springer, Heidelberg, October 2021. 20, 134, 136, 137

[HKO22] David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky. EpiGRAM:
Practical garbled RAM. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
3–33. Springer, Heidelberg, May / June 2022. 21

[HKP20] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. MOTIF:
(almost) free branching in GMW - via vector-scalar multiplication. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 3–30. Springer, Heidelberg, December
2020. 20, 134, 136, 137

[HKP21a] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. Garbling,
stacked and staggered - faster k-out-of-n garbled function evaluation. In
Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory
and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part II, volume 13091 of Lecture
Notes in Computer Science, pages 245–274. Springer, 2021. 134

[HKP21b] David Heath, Vladimir Kolesnikov, and Stanislav Peceny. Masked
triples - amortizing multiplication triples across conditionals. In Juan
Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 319–
348. Springer, Heidelberg, May 2021. 134, 136, 137

https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1530

194 BIBLIOGRAPHY

[HKRS20] Marco Holz, Ágnes Kiss, Deevashwer Rathee, and Thomas Schneider.
Linear-complexity private function evaluation is practical. In Liqun
Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ES-
ORICS 2020, Part II, volume 12309 of LNCS, pages 401–420. Springer,
Heidelberg, September 2020. 20

[Hop20] Daira Hopwood, 2020. https://github.com/zcash/pasta. 109,
127

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-
Vazquez. Concretely efficient large-scale MPC with active security (or,
TinyKeys for TinyOT). In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 86–117.
Springer, Heidelberg, December 2018. 15, 133, 135, 138, 144, 149

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 145–161. Springer, Heidelberg, August
2003. 17

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson
and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007. 15, 45, 48, 57, 62, 64, 85, 86

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on en-
crypted data. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of
LNCS, pages 575–594. Springer, Heidelberg, February 2007. 21

[JB23] Paul Gafni Jeremy Bruestle. Risc zero zkvm: Scalable, transparent
arguments of risc-v integrity, 2023. 18

[Jiv19] Aram Jivanyan. Lelantus: A new design for anonymous and confi-
dential cryptocurrencies. Cryptology ePrint Archive, Paper 2019/373,
2019. https://eprint.iacr.org/2019/373. 131

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic state-
ments efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 2013, pages 955–966. ACM Press, November
2013. 35, 36, 40

[JM20] Aram Jivanyan and Tigran Mamikonyan. Hierarchical one-out-of-many
proofs with applications to blockchain privacy and ring signatures.
2020 15th Asia Joint Conference on Information Security (AsiaJCIS),
pages 74–81, 2020. 39

https://github.com/zcash/pasta
https://eprint.iacr.org/2019/373

BIBLIOGRAPHY 195

[Kel20] Marcel Keller. MP-SPDZ: A versatile framework for multi-party com-
putation. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020. 167

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signa-
tures. In David Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press,
October 2018. viii, 35, 38, 45, 46, 67, 72, 73, 76, 79, 85, 86, 87

[KM11] Jonathan Katz and Lior Malka. Constant-round private function evalu-
ation with linear complexity. In Dong Hoon Lee and Xiaoyun Wang,
editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 556–571.
Springer, Heidelberg, December 2011. 20, 137

[Kol18] Vladimir Kolesnikov. Free IF: How to omit inactive branches and
implement S-universal garbled circuit (almost) for free. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part III, vol-
ume 11274 of LNCS, pages 34–58. Springer, Heidelberg, December
2018. 20, 36, 40, 66

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster
malicious arithmetic secure computation with oblivious transfer. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016, pages 830–842. ACM
Press, October 2016. 15, 133, 135, 136, 138, 144, 149, 150, 167

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 158–189.
Springer, Heidelberg, April / May 2018. 135

[KS16] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is prac-
tical. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 699–728. Springer,
Heidelberg, May 2016. 16

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving univer-
sal machine executions without universal circuits. Cryptology ePrint
Archive, Report 2022/1758, 2022. https://eprint.iacr.org/
2022/1758. 19

[KS23] Abhiram Kothapalli and Srinath Setty. Hypernova: Recursive argu-
ments for customizable constraint systems. Cryptology ePrint Archive,
Paper 2023/573, 2023. https://eprint.iacr.org/2023/573. 19

https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/573

196 BIBLIOGRAPHY

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510
of LNCS, pages 359–388. Springer, Heidelberg, August 2022. 19

[lat21] Lattigo v2.2.0. Online: http://github.com/ldsec/lattigo, July
2021. EPFL-LDS. 168

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Peter Schwabe, Gregor Seiler, Damien Stehlé, and Shi
Bai. CRYSTALS-DILITHIUM. Technical report, National In-
stitute of Standards and Technology, 2022. available at https:
//csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. 23

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems. In 31st FOCS, pages
2–10. IEEE Computer Society Press, October 1990. 8

[Lip16] Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge
SNARKs. In David Pointcheval, Abderrahmane Nitaj, and Tajjeeddine
Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS, pages
185–206. Springer, Heidelberg, April 2016. 105

[LN18] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivi-
ous RAM lower bound! In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 523–542.
Springer, Heidelberg, August 2018. 21

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 719–734. Springer, Heidelberg, May
2013. 21

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via
cut-and-choose oblivious transfer. In Yuval Ishai, editor, TCC 2011,
volume 6597 of LNCS, pages 329–346. Springer, Heidelberg, March
2011. 160

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010. 161

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, edi-
tors, EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer,
Heidelberg, May 2013. 161

http://github.com/ldsec/lattigo
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

BIBLIOGRAPHY 197

[LRR+19] Russell W. F. Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder,
Sri Aravinda Krishnan Thyagarajan, and Jiafan Wang. Omniring:
Scaling private payments without trusted setup. In Lorenzo Cavallaro,
Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019, pages 31–48. ACM Press, November 2019. 104, 131

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography
(invited paper). In Nigel P. Smart, editor, 10th IMA International
Conference on Cryptography and Coding, volume 3796 of LNCS, pages
1–12. Springer, Heidelberg, December 2005. 13

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS,
pages 369–378. Springer, Heidelberg, August 1988. 24

[MGGR13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin.
Zerocoin: Anonymous distributed E-cash from Bitcoin. In 2013 IEEE
Symposium on Security and Privacy, pages 397–411. IEEE Computer
Society Press, May 2013. 18, 131

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput.,
30:1253–1298, 2000. 19

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C.
Williams, editor, CRYPTO’85, volume 218 of LNCS, pages 417–426.
Springer, Heidelberg, August 1986. 108

[min23] Mina Protocol, 2023. https://minaprotocol.com/. 20

[MRK03] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets.
In 44th FOCS, pages 80–91. IEEE Computer Society Press, October
2003. 106

[MS13] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in
MPC an efficient framework for private function evaluation. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 557–574. Springer, Heidelberg, May 2013. 20,
26, 137, 138

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor
tracing. IEICE Transactions, E85-A(2):481–484, February 2002. 127

[MSS14] Payman Mohassel, Seyed Saeed Sadeghian, and Nigel P. Smart. Ac-
tively secure private function evaluation. In Palash Sarkar and Tetsu
Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
486–505. Springer, Heidelberg, December 2014. 20, 137

https://minaprotocol.com/

198 BIBLIOGRAPHY

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited
talk). In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 96–109. Springer, Heidelberg, August 2003. 12

[Neu51] Von Neumann. Various techniques used in connection with random
digits. Notes by GE Forsythe, pages 36–38, 1951. 3

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In
Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
275–292. Springer, Heidelberg, February 2005. 106

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-
random functions and KDCs. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 327–346. Springer, Hei-
delberg, May 1999. 144

[PLS23] Andrew Park, Wei-Kai Lin, and Elaine Shi. NanoGRAM: Garbled
RAM with Õ(logN) overhead. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part I, volume 14004 of LNCS, pages
456–486. Springer, Heidelberg, April 2023. 21

[PTT08] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopou-
los. Authenticated hash tables. In Peng Ning, Paul F. Syverson, and
Somesh Jha, editors, ACM CCS 2008, pages 437–448. ACM Press,
October 2008. 106

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer,
Heidelberg, August 2008. 137, 154, 166

[R.57] Varshamov R. R. Estimate of the number of signals in error correcting
codes. Docklady Akad. Nauk, S.S.S.R., 117:739–741, 1957. 7

[rep20] Report on the security of stark-friendly hash functions (version 2.0),
2020. 107

[Roy22] Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field
silent VOLE in the minicrypt model. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS,
pages 657–687. Springer, Heidelberg, August 2022. 17

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
552–565. Springer, Heidelberg, December 2001. 36, 79

BIBLIOGRAPHY 199

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pages 239–252. Springer, Heidelberg, August 1990. 38, 45, 61, 79, 80

[se19] swisspost evoting. E-voting system 2019. https://gitlab.com/
swisspost-evoting/e-voting-system-2019, 2019. 35

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs
without trusted setup. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–
737. Springer, Heidelberg, August 2020. 8

[Sha79] Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612–613, November 1979. 63

[Sha90] Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Computer
Society Press, October 1990. 8

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS,
pages 256–266. Springer, Heidelberg, May 1997. 13

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint
systems for succinct arguments. Cryptology ePrint Archive, Paper
2023/552, 2023. https://eprint.iacr.org/2023/552. 18

[SvS+13] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an ex-
tremely simple oblivious RAM protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 299–
310. ACM Press, November 2013. 21

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 71–89. Springer, Heidelberg, August 2013. 8

[Tha23] Justin Thaler. Proofs, arguments, and zero-knowledge (draft: 2023-
07-18), 2023. https://people.cs.georgetown.edu/jthaler/
ProofsArgsAndZK. 8

[The] The Coq Development Team. Coq. 8

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceed-
ings of the Eighth Annual ACM Symposium on Theory of Computing,
STOC ’76, page 196–203, New York, NY, USA, 1976. Association for
Computing Machinery. 16

https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://eprint.iacr.org/2023/552
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK

200 BIBLIOGRAPHY

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowl-
edge imply time/space efficiency. In Ran Canetti, editor, TCC 2008,
volume 4948 of LNCS, pages 1–18. Springer, Heidelberg, March 2008.
18

[van90] Peter van EMDE BOAS. Chapter 1 - machine models and simula-
tions. In JAN VAN LEEUWEN, editor, Algorithms and Complexity,
Handbook of Theoretical Computer Science, pages 1–66. Elsevier,
Amsterdam, 1990. 12

[WCS15] Xiao Wang, T.-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On
tightness of the Goldreich-Ostrovsky lower bound. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages
850–861. ACM Press, October 2015. 21

[WJS+19] Ryan Wails, Aaron Johnson, Daniel Starin, Arkady Yerukhimovich,
and S. Dov Gordon. Stormy: Statistics in tor by measuring securely. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 615–632. ACM Press, November
2019. 133

[WK19] Philip Wadler and Wen Kokke. Programming Language Foundations
in Agda. 2019. Available at http://plfa.inf.ed.ac.uk/. 8

[WSR+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg,
and Michael Walfish. Efficient RAM and control flow in verifiable
outsourced computation. In NDSS 2015. The Internet Society, February
2015. 18

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine:
Fast, scalable, and communication-efficient zero-knowledge proofs for
boolean and arithmetic circuits. In 2021 IEEE Symposium on Security
and Privacy, pages 1074–1091. IEEE Computer Society Press, May
2021. 17

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papa-
manthou, and Dawn Song. Libra: Succinct zero-knowledge proofs
with optimal prover computation. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 733–764. Springer, Heidelberg, August 2019. 8

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986. 133, 142

[YHH+23] Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and
Muthuramakrishnan Venkitasubramaniam. Batchman and robin:

http://plfa.inf.ed.ac.uk/

BIBLIOGRAPHY 201

Batched and non-batched branching for interactive zk. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’23, page 1452–1466, New York, NY, USA, 2023.
Association for Computing Machinery. 17

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSil-
ver: Efficient and affordable zero-knowledge proofs for circuits and
polynomials over any field. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021, pages 2986–3001. ACM Press, November 2021. 15,
17

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang.
Ferret: Fast extension for correlated OT with small communication. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1607–1626. ACM Press, November 2020. 17

[Zav20] Greg Zaverucha. The picnic signature algorithm. Technical report,
2020. https://github.com/microsoft/Picnic/raw/master/
spec/spec-v3.0.pdf. 35

[ZBK+22] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller,
Anca Nitulescu, and Mark Simkin. Caulk: Lookup arguments in
sublinear time. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 3121–3134. ACM Press,
November 2022. 18, 105, 106

[Zha22] Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022. 13

[zke23] ZK-EVM Circuits. Github Repository, 2023. 18

[ZZK22] Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz. An analysis of the
algebraic group model. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 310–322.
Springer, Heidelberg, December 2022. 13

https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction to Cryptography
	Notation
	Cryptography in a Nutshell
	Introduction to Proofs/Arguments
	Multiparty Computation and Zero-Knowledge Proofs
	Disjunctions & Branching Computation

	Private Branching Computation
	Disjunction Compilers: Stacking Sigma Protocols
	Set Memberships: Curve Trees
	Oblivious Branching Computation: Branching MPC

	Works Not Included in the Thesis

	Included Publications
	Stacking Sigmas: A Framework to Compose -Protocols for Disjunctions
	Introduction
	Related Work
	Technical Overview
	Preliminaries
	Partially-Binding Vector Commitments
	Stackable -Protocols
	Self-Stacking: Disjunctions With The Same Protocol
	Cross-Stacking: Disjunctions with Different Protocols
	k-out-of- Proofs of Partial Knowledge
	Measuring Concrete Efficiency
	Blum87 is Stackable: Proof of lem:blum
	Well-Behaved Simulators: Proof of Lemma 5
	Security Proof for Cross-Stacking Compiler (Theorem 6)
	Overview of CCS:KatKolWan18 and Proof of thm:kkwstackable
	Overview of Ligero and Proof of thm:ligerostackable
	Partially Binding Vector Commitments in the ROM

	Curve Trees: Practical and Transparent Zero-Knowledge Accumulators
	Introduction
	Preliminaries
	Zero-Knowledge Set Membership
	Curve Trees as Accumulators
	Correctness and Security
	Final Construction: Curve Trees with Compressed Points
	VCash: Transparent and Efficient Anonymous Payment System
	Implementation and Evaluation
	Accumulators

	Secure Multiparty Computation with Free Branching
	Introduction
	Technical Overview
	Preliminaries
	Oblivious Inner Product
	MPC Interface
	Non-Constant Round Semi-Honest Branching MPC
	Non-Constant Round Maliciously Secure Branching MPC
	Constant Round Semi-Honest Branching MPC
	OIP from Linearly Homomorphic Encryption
	Implementation

	Bibliography

